Skip to main content
Log in

Neurotoxicity of glutamate in chick telencephalon neurons: reduction of toxicity by preincubation with carbachol, but not by the endogenous fatty acid amides anandamide and palmitoylethanolamide

  • ORGAN TOXICITY AND MECHANISMS
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Exposure of chick telencephalon neurons in serum-free primary culture to glutamate produced a concentration-dependent cell toxicity as seen by an increase in lactate dehydrogenase (LDH) release that was blocked by the N-methyl-d-aspartate (NMDA) receptor antagonist dizocilpine and was reduced by preincubation with the cholinergic agonist carbachol. Preincubation with a threshold concentration of NMDA did not prevent glutamate toxicity, suggesting that chick NMDA receptors do not desensitize in the manner reported for their rodent counterparts. Neither anandamide (arachidonyl ethanolamide, AEA) nor palmitoylethanolamide (PEA) was able to prevent the neurotoxicity produced by prolonged glutamate incubation, even under conditions in which the metabolism of the compounds by fatty acid amide hydrolase or AEA cellular uptake was blocked. It is concluded that treatments reported as granting neuroprotection towards glutamate toxicity in rodent primary neuronal cultures do not necessarily show the same properties in the chick.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Additional information

Received: 15 November 1999 / Accepted: 2 February 2000

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andersson, M., Jacobsson, S., Jonsson, KO. et al. Neurotoxicity of glutamate in chick telencephalon neurons: reduction of toxicity by preincubation with carbachol, but not by the endogenous fatty acid amides anandamide and palmitoylethanolamide. Arch Toxicol 74, 161–164 (2000). https://doi.org/10.1007/s002040050669

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s002040050669

Navigation