Skip to main content
Log in

Studies on the comparative toxicity of S-(1,2-dichlorovinyl)-L-cysteine, S-(1,2-dichlorovinyl)-L-homocysteine and 1,1,2-trichloro-3,3,3-trifluoro-1-propene in the Fischer 344 rat

  • Original Investigation
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

The renal tubular toxicity of various halogenated xenobiotics has been attributed to their enzymatic bioactivation to reactive intermediates by S-conjugation. A combination of high resolution proton nuclear magnetic resonance (1H NMR) spectroscopy of urine, renal histopathology and more routinely used clinical chemistry methods has been used to explore the acute toxic and biochemical effects of S-(1,2-dichlorovinyl)-L-cysteine (DCVC), S-(1,2-dichlorovinyl)-L-homocysteine (DCVHC) and 1,1,2-trichloro-3,3,3-trifluoro-1-propene (TCTFP) up to 48 h following their administration to male Fischer 344 (F344) rats. In the absence of gross renal pathology, 1H NMR urinalysis revealed increased excretion of the tricarboxylic acid cycle intermediates citrate and succinate following DCVC administration. In contrast, both DCVHC and TCTFP produced functional defects in the S2 and S3 segments of the proximal tubule that were confirmed histologically. In these cases, 1H NMR urinalysis revealed increased excretion of glucose, L-lactate, acetate and 3-D-hydroxybutyrate (HB) as well as selective amino aciduria (alanine, valine, glutamate and glutamine). The significance of the proximal nephropathies induced by DCVHC and TCTFP is discussed in relation to biochemical observations on other xenobiotics that are toxic by similar mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BUN :

blood urea nitrogen

CPH :

cephaloridine

DCVC :

S-(1,2-dichlorovinyl)-L-cysteine

DCVHC :

S-(1,2-dichlorovinyl)-L-homocysteine

DMA :

dimethylamine

DMG :

N,N-dimethylglycine

FID :

free induction decay

FT :

Fourier transformation

F344 :

Fischer 344

GFR :

glomerular filtration rate

GSH :

glutathione α-glucose α-anomeric proton of glucose

HB :

3-D-hydroxybutyric acid

HCBD :

hexachloro-1:3-butadiene

HFP :

hexafluoropropene ⊙ i.p. intraperitoneal

MW :

molecular weight

1 H NMR :

proton nuclear magnetic resonance

2-OG :

2-oxoglutarate ⊙ ppm parts per million

SD :

Sprague-Dawley

TCTFP :

1,1,2-trichloro-3,3,3-trifluoro-1-propene

TMAO :

trimethylamine N-oxide

TSP :

3-trimethylsilyl-[2,2,3,3-2H4]-1-propionate ⊙ Sodium salt

UFR :

urine flow rate

UN :

uranyl nitrate

References

  • Anders MW, Llfarra AA, Lash LH (1987) Cellular effects of reactive intermediates: nephrotoxicity of S-conjugates of amino acids. Arch Toxicol 60: 103–108

    Article  PubMed  CAS  Google Scholar 

  • Anders MW, Lash LH, Dekant W, Elfarra AA, Dohn DR (1988) Biosynthesis and biotransformation of glutathione S-conjugates to toxic metabolites. CRC Crit Rev Toxicol 18: 311–341

    Article  CAS  Google Scholar 

  • Anderson PM, Schultze MO (1965) Cleavage of S-(1,2-dichlorovinyl)-L-cysteine by an enzyme of bovine origin. Arch Biochem Biophys 111: 593–602

    Article  PubMed  CAS  Google Scholar 

  • Anthony ML, Gartland KPR, Beddell CR, Lindon JC, Nicholson JK (1992) Cephaloridine-induced nephrotoxicity in the Fischer 344 rat: proton NMR spectroscopic studies of urine and plasma in relation to conventional clinical chemical and histopathological assessments of nephronal damage. Arch Toxicol 66: 525–537

    Article  PubMed  CAS  Google Scholar 

  • Anthony ML, Sweatman BC, Beddell CR, Lindon JC, Nicholson JK (1994a) Pattern recognition classification of nephrotoxicity based on metabolic data derived from high resolution 1H NMR spectra of urine. Mol Pharmacol 46: 199–211

    PubMed  CAS  Google Scholar 

  • Anthony ML, Gartland KPR, Beddell CR, Lindon JC, Nicholson JK (1994b) Studies on the biochemical toxicology of uranyl nitrate in the rat. Arch Toxicol 68: 43–53

    Article  PubMed  CAS  Google Scholar 

  • Commandeur JNM, Vermeulen NPE (1990) Identification of N-acetyl(1,2-dichlorovinyl)-L-cysteine as two regioisomeric mercapturic acids of trichloroethylene in the rat. Chem Res Toxicol 3: 212–218

    Article  PubMed  CAS  Google Scholar 

  • Dekant W, Metzler M, Henschler D (1986) Identification of N-acetyl(1,2-dichlorovinyl)-L-cysteine as a urinary metabolite of trichloroethylene: a possible explanation of its nephrocarcinogenicity in male rats. Biochem Pharmacol 35: 2455–2458

    Article  PubMed  CAS  Google Scholar 

  • Dekant W, Berthold K, Vamvakas S, Henschler D, Anders MW (1988) Thioacylating intermediates as metabolites of S-(1,2-dichlorovinyl)-L-cysteine and S-(1,2,2-trichlorovinyl)-L-cysteine formed by cysteine conjugate β-lyase. Chem Res Toxicol 1: 175–178

    Article  PubMed  CAS  Google Scholar 

  • Dilley JV, Carter VL, Harris ES (1974) Fluoride ion excretion by male rats after inhalation of one of several fluoroethylenes or hexafluoropropene. Toxicol Appl Pharmacol 27: 582–590

    Article  PubMed  CAS  Google Scholar 

  • Elfarra AA, Lash LH, Anders MW (1986a) Metabolic activation and detoxication of nephrotoxic cysteine and homocysteine S-conjugates. Proc Natl Acad Sci USA 83: 2667–2671

    Article  PubMed  CAS  Google Scholar 

  • Elfarra AA, Jakobson I, Anders MW (1986b) Mechanism of S-(1,2-dichlorovinyl)glutathione-induced nephrotoxicity. Biochem Pharmacol 35: 283–288

    Article  PubMed  CAS  Google Scholar 

  • Gartland KPR, Bonner FW, Nicholson JK (1989) Investigations into the biochemical effects of region-specific nephrotoxins. Mol Pharmacol 35: 242–250

    PubMed  CAS  Google Scholar 

  • Hiley C, Bell J, Hume R, Strange R (1989) Differential expression of alpha and pi isoenzymes of glutathione S-transferase in the developing human kidney. Biochim Biophys Acta 990: 321–324

    PubMed  CAS  Google Scholar 

  • Ishmael J, Pratt IS, Lock EA (1982) Necrosis of the pars recta (S3 segment) of the rat kidney produced by hexachloro 1:3 butadiene. J Pathol 138: 99–113

    Article  PubMed  CAS  Google Scholar 

  • Jones TW, Qin C, Schaeffer VH, Stevens JL (1988) Immunohistochemical localization of glutamine transaminase K, a rat kidney cysteine conjugate β-lyase, and the relationship to the segment specificity of cysteine conjugate nephrotoxicity. Mol Pharmacol 34: 621–627

    PubMed  CAS  Google Scholar 

  • Lash LH, Anders MW (1987) Mechanism of S-(1,2-Dichlorovinyl)-L-cysteine- and S-(1,2-dichlorovinyl)-L-homocysteine-induced renal mitochondrial toxicity. Mol Pharmacol 32: 549–556

    PubMed  CAS  Google Scholar 

  • Lash LH, Elfarra AA, Anders MW (1986) S-(1,2-dichlorovinyl)-L-homocysteine-induced cytotoxicity in isolated rat kidney cells. Arch Biochem Biophys 251: 432–439

    Article  PubMed  CAS  Google Scholar 

  • Lash LH, Anders MW, Jones DP (1988) Glutathione homeostasis and glutathione S-conjugate toxicity in the kidney. Rev Biochem Toxicol 9: 29–67

    Google Scholar 

  • Lock EA, Ishmael J (1979) The acute toxic effects of hexachloro-1,3-butadiene on the rat kidney. Arch Toxicol 43: 47–57

    Article  PubMed  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin-phenol reagent. J Biol Chem 193: 265–275

    PubMed  CAS  Google Scholar 

  • MacFarlane M, Foster JR, Gibson GG, King LJ, Lock EA (1989) Cysteine conjugate β-lyase of rat kidney: characterization, immunocytochemical localization and correlation with hexachlorobutadiene nephrotoxicity. Toxicol Appl Pharmacol 98: 185–197

    Article  PubMed  CAS  Google Scholar 

  • McKinney LL, Picken JC, Weakley FB, Eldridge AC, Campbell RE, Cowan JC, Biester HE (1959) Possible toxic factor of trichloroethylene-extracted soybean oil meal. J Am Chem Soc 81: 909–915

    Article  CAS  Google Scholar 

  • Nicholson JK, Wilson ID (1989) High resolution proton magnetic resonance spectroscopy of biological fluids. Prog NMR Spectrosc 21: 449–501

    Article  CAS  Google Scholar 

  • Potter CL, Gandolfi AJ, Nagle R, Clayton JW (1981) Effects of inhaled chlorotrifluoroethylene and hexafluoropropene on the rat kidney. Toxicol Appl Pharmacol 59: 431–440

    Article  PubMed  CAS  Google Scholar 

  • Silverman LM, Christenson RH, Grant GH (1976) Amino acids and proteins. In: Tietz ND (ed) Fundamentals of clinical chemistry, 2nd ed. WB Saunders, Philadelphia, p 523

    Google Scholar 

  • Simpson DP (1983) Citrate excretion: a window on renal metabolism. Am J Physiol 244: F223-F234

    PubMed  CAS  Google Scholar 

  • Terracini B, Parker VH (1965) A pathological study on the toxicity of S-dichlorovinyl-L-cysteine. Food Cosmet Toxicol 3: 67–74

    Article  PubMed  CAS  Google Scholar 

  • Vamvakas S, Kremling E, Dekant W (1989) Metabolic activation of the nephrotoxic haloalkene 1,1,2-trichloro-3,3,3-trifluoro-1-propene by glutathione conjugation. Biochem Pharmacol 38: 2297–2304

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anthony, M.L., Beddell, C.R., Lindon, J.C. et al. Studies on the comparative toxicity of S-(1,2-dichlorovinyl)-L-cysteine, S-(1,2-dichlorovinyl)-L-homocysteine and 1,1,2-trichloro-3,3,3-trifluoro-1-propene in the Fischer 344 rat. Arch Toxicol 69, 99–110 (1994). https://doi.org/10.1007/s002040050144

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s002040050144

Key words

Navigation