Skip to main content

Advertisement

Log in

Role of the human N-acetyltransferase 2 genetic polymorphism in metabolism and genotoxicity of 4, 4′-methylenedianiline

  • Toxicogenomics
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

4, 4′-Methylenedianiline (MDA) is used extensively as a curing agent in the production of elastomers and is classified as reasonably anticipated to be a human carcinogen based on sufficient evidence in animal experiments. Human N-acetyltransferase 1 (NAT1) and 2 (NAT2) catalyze the N-acetylation of aromatic amines and NAT2 is subjected to a common genetic polymorphism in human populations separating individuals into rapid, intermediate, and slow acetylator phenotypes. Although MDA is known to undergo N-acetylation to mono- and di-acetyl metabolites, very little is known regarding whether this metabolism is subject to the NAT2 genetic polymorphism. We investigated the N-acetylation of MDA by recombinant human NAT1, NAT2, genetic variants of NAT2, and cryoplateable human hepatocytes obtained from rapid, intermediate and slow acetylators. MDA N-acetylation was catalyzed by both recombinant human NAT1 and NAT2 exhibiting a fivefold higher affinity for human NAT2. N-acetylation of MDA was acetylator genotype dependent as evidenced via its N-acetylation by recombinant human NAT2 genetic variants or by cryoplateable human hepatocytes. MDA N-acetylation to the mono-acetyl or di-acetyl-MDA was highest in rapid, lower in intermediate, and lowest in slow acetylator human hepatocytes. MDA-induced DNA damage in the human hepatocytes was dose-dependent and also acetylator genotype dependent with highest levels of DNA damage in rapid, lower in intermediate, and lowest in slow acetylator human hepatocytes under the same MDA exposure level. In summary, the N-acetylation of MDA by recombinant human NAT2 and cryopreserved human hepatocytes support an important role for the NAT2 genetic polymorphism in modifying MDA metabolism and genotoxicity and potentially carcinogenic risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agency for Toxic Substances and Disease Registry (1998) Toxicological Profile for 4,4′-methylenedianiline. Department of Health and Human Services, Public Health Service, Atlanta

    Google Scholar 

  • Bailie MB, Mullaney TP, Roth RA (1993) Characterization of acute 4,4′-methylene dianiline hepatotoxicity in the rat. Environ Health Perspect 101(2):130–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bastian PG (1984) Occupational hepatitis caused by methylenedianiline. Med J Aust 141(8):533–535

    Article  CAS  PubMed  Google Scholar 

  • Brooks LJ, Neale JM, Pieroni DR (1979) Acute myocardiopathy following tripathway exposure to methylenedianiline. JAMA 242(14):1527–1528

    Article  CAS  PubMed  Google Scholar 

  • Carreon T, Ruder AM, Schulte PA et al (2006) NAT2 slow acetylation and bladder cancer in workers exposed to benzidine. Int J Cancer 118(1):161–168

    Article  CAS  PubMed  Google Scholar 

  • Carvajal-Diaz J (2015) IHS chemical economics handbook: aniline. IHS, Englewood

    Google Scholar 

  • Castelain F, Girardin P, Penven E, Pelletier F (2018) Occupational contact dermatitis caused by polyurethane foam: 6 cases. Contact Dermatitis 79(1):52–54

    Article  PubMed  Google Scholar 

  • Chevereau M, Glatt H, Zalko D, Cravedi JP, Audebert M (2017) Role of human sulfotransferase 1A1 and N-acetyltransferase 2 in the metabolic activation of 16 heterocyclic amines and related heterocyclics to genotoxicants in recombinant V79 cells. Arch Toxicol 91(9):3175–3184

    Article  CAS  PubMed  Google Scholar 

  • Cocker J, Boobis AR, Davies DS (1988) Determination of the N-acetyl metabolites of 4,4′-methylene dianiline and 4,4′-methylene-bis(2-chloroaniline) in urine. Biomed Environ Mass Spectrom 17(3):161–167

    Article  CAS  PubMed  Google Scholar 

  • Dalene M, Jakobsson K, Rannug A, Skarping G, Hagmar L (1996) MDA in plasma as a biomarker of exposure to pyrolysed MDI-based polyurethane: correlations with estimated cumulative dose and genotype for N-acetylation. Int Arch Occup Environ Health 68(3):165–169

    Article  CAS  PubMed  Google Scholar 

  • Doll MA, Hein DW (2001) Comprehensive human NAT2 genotype method using single nucleotide polymorphism-specific polymerase chain reaction primers and fluorogenic probes. Anal Biochem 288(1):106–108

    Article  CAS  PubMed  Google Scholar 

  • Dunn G, Guirguis S (1979) pp′—Methylene dianiline (MDA) as an occupational health problem a suggested time-weighted average exposure level and medical program. Arch Ind Hygene Toxicol 30:639–645

    Google Scholar 

  • Fukushima S, Shibata M, Hibino T, Yoshimura T, Hirose M, Ito N (1979) Intrahepatic bile duct proliferation induced by 4,4′-diaminodiphenylmethane in rats. Toxicol Appl Pharmacol 48(1 Pt 1):145–155

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Closas M, Malats N, Silverman D et al (2005) NAT2 slow acetylation, GSTM1 null genotype, and risk of bladder cancer: results from the Spanish Bladder Cancer Study and meta-analyses. Lancet 366(9486):649–659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giouleme O, Karabatsou S, Hytiroglou P et al (2011) 4,4′-Methylenedianiline-induced hepatitis in an industrial worker: case report and review of the literature. Hum Exp Toxicol 30(7):762–767

    Article  CAS  PubMed  Google Scholar 

  • Gohlke R, Schmidt P (1974) 4,4′-Diaminodiphenylmethane–histological, enzyme histochemical and autoradiographic investigations in acute and subacute experiments in rats, with and without the additional stress of heat (author’s transl). Int Arch Arbeitsmed 32(3):217–231

    Article  CAS  PubMed  Google Scholar 

  • Golka K, Prior V, Blaszkewicz M, Bolt HM (2002) The enhanced bladder cancer susceptibility of NAT2 slow acetylators towards aromatic amines: a review considering ethnic differences. Toxicol Lett 128(1–3):229–241

    Article  CAS  PubMed  Google Scholar 

  • Gries W, Leng G (2013) Analytical determination of specific 4,4′-methylene diphenyl diisocyanate hemoglobin adducts in human blood. Anal Bioanal Chem 405(23):7205–7213

    Article  CAS  PubMed  Google Scholar 

  • Guengerich FP, Shimada T (1991) Oxidation of toxic and carcinogenic chemicals by human cytochrome P-450 enzymes. Chem Res Toxicol 4(4):391–407

    Article  CAS  PubMed  Google Scholar 

  • Hamada H, Bruze M, Zimerson E, Isaksson M, Engfeldt M (2017) Sensitization and cross-reactivity patterns of contact allergy to diisocyanates and corresponding amines: investigation of diphenylmethane-4,4′-diisocyanate, diphenylmethane-4,4′-diamine, dicyclohexylmethane-4,4′-diisocyanate, and dicylohexylmethane-4,4′-diamine. Contact Dermatitis 77(4):231–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hebert VY, Jones BC, Mifflin RC, Dugas TR (2011) Role of COX-2 in the bioactivation of methylenedianiline and in its proliferative effects in vascular smooth muscle cells. Cardiovasc Toxicol 11(4):316–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hein DW (2002) Molecular genetics and function of NAT1 and NAT2: role in aromatic amine metabolism and carcinogenesis. Mutat Res 506–507:65–77

    Article  PubMed  Google Scholar 

  • Hein DW, Rustan TD, Bucher KD, Furman EJ, Martin WJ (1991a) Extrahepatic expression of the N-acetylation polymorphism toward arylamine carcinogens in tumor target organs of an inbred rat model. J Pharmacol Exp Ther 258(1):232–236

    CAS  PubMed  Google Scholar 

  • Hein DW, Rustan TD, Bucher KD, Martin WJ, Furman EJ (1991b) Acetylator phenotype-dependent and -independent expression of arylamine N-acetyltransferase isozymes in rapid and slow acetylator inbred rat liver. Drug Metab Dispos 19(5):933–937

    CAS  PubMed  Google Scholar 

  • Hein DW, Doll MA, Rustan TD et al (1993) Metabolic activation and deactivation of arylamine carcinogens by recombinant human NAT1 and polymorphic NAT2 acetyltransferases. Carcinogenesis 14(8):1633–1638

    Article  CAS  PubMed  Google Scholar 

  • Hein DW, Ferguson RJ, Doll MA, Rustan TD, Gray K (1994) Molecular genetics of human polymorphic N-acetyltransferase: enzymatic analysis of 15 recombinant wild-type, mutant, and chimeric NAT2 allozymes. Hum Mol Genet 3(5):729–734

    Article  CAS  PubMed  Google Scholar 

  • Hein DW, Doll MA, Rustan TD, Ferguson RJ (1995) Metabolic activation of N-hydroxyarylamines and N-hydroxyarylamides by 16 recombinant human NAT2 allozymes: effects of 7 specific NAT2 nucleic acid substitutions. Cancer Res 55(16):3531–3536

    CAS  PubMed  Google Scholar 

  • Hein DW, Doll MA, Fretland AJ et al (1997) Rodent models of the human acetylation polymorphism: comparisons of recombinant acetyltransferases. Mutat Res 376(1–2):101–106

    Article  CAS  PubMed  Google Scholar 

  • Hein DW, McQueen CA, Grant DM, Goodfellow GH, Kadlubar FF, Weber WW (2000) Pharmacogenetics of the arylamine N-acetyltransferases: a symposium in honor of Wendell W. Weber. Drug Metab Dispos 28(12):1425–1432

    CAS  PubMed  Google Scholar 

  • Hein DW, Zhang X, Doll MA (2018) Role of N-acetyltransferase 2 acetylation polymorphism in 4, 4′-methylene bis (2-chloroaniline) biotransformation. Toxicol Lett 283:100–105

    Article  CAS  PubMed  Google Scholar 

  • Hsu FF, Lakshmi V, Rothman N et al (1996) Determination of benzidine, N-acetylbenzidine, and N, N′-diacetylbenzidine in human urine by capillary gas chromatography/negative ion chemical ionization mass spectrometry. Anal Biochem 234(2):183–189

    Article  CAS  PubMed  Google Scholar 

  • Kaaria K, Hirvonen A, Norppa H, Piirila P, Vainio H, Rosenberg C (2001) Exposure to 4,4′-methylenediphenyl diisocyanate (MDI) during moulding of rigid polyurethane foam: determination of airborne MDI and urinary 4,4′-methylenedianiline (MDA). The Analyst 126(4):476–479

    Article  CAS  PubMed  Google Scholar 

  • Kautiainen A, Wachtmeister CA, Ehrenberg L (1998) Characterization of hemoglobin adducts from a 4, 4′-methylenedianiline metabolite evidently produced by peroxidative oxidation in vivo. Chem Res Toxicol 11(6):614–621

    Article  CAS  PubMed  Google Scholar 

  • LeVine MJ (1983) Occupational photosensitivity to diaminodiphenylmethane. Contact Dermatitis 9(6):488–490

    Article  CAS  PubMed  Google Scholar 

  • Marczynski B, Czuppon AB, Hoffarth HP, Marek W, Baur X (1992) DNA damage in human white blood cells after inhalative exposure to methylenediphenyl diisocyanate (MDI)–case report. Toxicol Lett 60(2):131–138

    Article  CAS  PubMed  Google Scholar 

  • Martelli A, Carrozzino R, Mattioli F, Brambilla G (2002) DNA damage induced by 4,4′-methylenedianiline in primary cultures of hepatocytes and thyreocytes from rats and humans. Toxicol Appl Pharmacol 182(3):219–225

    Article  CAS  PubMed  Google Scholar 

  • McGill DB, Motto JD (1974) An industrial outbreak of toxic hepatitis due to methylenedianiline. N Engl J Med 291(6):278–282

    Article  CAS  PubMed  Google Scholar 

  • McQueen CA, Williams GM (1990) Review of the genotoxicity and carcinogenicity of 4,4′-methylene-dianiline and 4,4′-methylene-bis-2-chloroaniline. Mutat Res 239(2):133–142

    Article  CAS  PubMed  Google Scholar 

  • Moore LE, Baris DR, Figueroa JD et al (2011) GSTM1 null and NAT2 slow acetylation genotypes, smoking intensity and bladder cancer risk: results from the New England bladder cancer study and NAT2 meta-analysis. Carcinogenesis 32(2):182–189

    Article  CAS  PubMed  Google Scholar 

  • National Toxicology Program (1983) NTP Carcinogenesis Studies of 4,4′-Methylenedianiline Dihydrochloride (CAS No. 13552-44-8) in F344/N Rats and B6C3F1 Mice (Drinking Water Studies). Natl Toxicol Program Tech Rep Ser 248:1–182

    Google Scholar 

  • National Toxicology Program (2011) 4,4′Methylenedianiline and its dihydrochloride. Rep Carcinog 12:265–267

    Google Scholar 

  • National Toxicology Program (2016) Report on Carcinogens, Fourteenth Edition. Research Triangle Park NC: U.S. Department of Health and Human Services, Public Health Service. https://ntp.niehs.nih.gov/go/roc14. Accessed 27 June 2019

  • Nichols L (2004) The Epping Jaundice outbreak: mortality after 38 years of follow-up. Int Arch Occup Environ Health 77(8):592–594

    Article  CAS  PubMed  Google Scholar 

  • OSHA (1992) Occupational exposure to 4/4′-methylenedianiline (MDA) (19101050); Final rule. Fed Regist 57:35630

    Google Scholar 

  • Page B, Page M, Noel C (1993) A new fluorometric assay for cytotoxicity measurements in-vitro. Int J Oncol 3(3):473–476

    CAS  PubMed  Google Scholar 

  • Robert A, Ducos P, Francin JM (1995) Determination of urinary 4,4′-methylenedianiline and its acetylated metabolites by solid-phase extraction and HPLC analysis with UV and electrochemical detection. Int Arch Occup Environ Health 68(1):44–51

    Article  CAS  PubMed  Google Scholar 

  • Rothman N, Bhatnagar VK, Hayes RB et al (1996) The impact of interindividual variation in NAT2 activity on benzidine urinary metabolites and urothelial DNA adducts in exposed workers. Proc Natl Acad Sci USA 93(10):5084–5089

    Article  CAS  PubMed  Google Scholar 

  • Rothman N, Garcia-Closas M, Hein DW (2007) Commentary: reflections on G. M. Lower and colleagues’ 1979 study associating slow acetylator phenotype with urinary bladder cancer: meta-analysis, historical refinements of the hypothesis, and lessons learned. Int J Epidemiol 36(1):23–28

    Article  PubMed  Google Scholar 

  • Schoental R (1968) Pathological lesions, including tumors, in rats after 4,4′-diaminodiphenylmethane and gamma-butyrolactone. Isr J Med Sci 4(6):1146–1158

    CAS  PubMed  Google Scholar 

  • Schupp T, Allmendinger H, Boegi C et al (2018) The environmental behavior of methylene-4,4′-dianiline. Rev Environ Contam Toxicol. https://doi.org/10.1007/398_2018_13

    Article  PubMed  Google Scholar 

  • Schutze D, Sepai O, Lewalter J, Miksche L, Henschler D, Sabbioni G (1995) Biomonitoring of workers exposed to 4,4′-methylenedianiline or 4,4′-methylenediphenyl diisocyanate. Carcinogenesis 16(3):573–582

    Article  CAS  PubMed  Google Scholar 

  • Schutze D, Sagelsdorff P, Sepai O, Sabbioni G (1996) Synthesis and quantification of DNA adducts of 4,4′-methylenedianiline. Chem Res Toxicol 9(7):1103–1112

    Article  CAS  PubMed  Google Scholar 

  • Sepai O, Henschler D, Sabbioni G (1995a) Albumin adducts, hemoglobin adducts and urinary metabolites in workers exposed to 4,4′-methylenediphenyl diisocyanate. Carcinogenesis 16(10):2583–2587

    Article  CAS  PubMed  Google Scholar 

  • Sepai O, Schutze D, Heinrich U, Hoymann HG, Henschler D, Sabbioni G (1995b) Hemoglobin adducts and urine metabolites of 4,4′-methylenedianiline after 4,4′-methylenediphenyl diisocyanate exposure of rats. Chem Biol Interact 97(2):185–198

    Article  CAS  PubMed  Google Scholar 

  • Shintani H, Nakamura A (1989) Analysis of a carcinogen, 4,4′-methylenedianiline, from thermosetting polyurethane during sterilization. J Anal Toxicol 13(6):354–357

    Article  CAS  PubMed  Google Scholar 

  • Tanaka K, Ino T, Sawahata T, Marui S, Igaki H, Yashima H (1985) Mutagenicity of N-acetyl and N, N′-diacetyl derivatives of 3 aromatic amines used as epoxy-resin hardeners. Mutat Res 143(1–2):11–15

    Article  CAS  PubMed  Google Scholar 

  • Vock EH, Vamvakas S, Gahlmann R, Lutz WK (1998) Investigation of the induction of DNA double-strand breaks by methylenediphenyl-4-4′-diisocyanate in cultured human lung epithelial cells. Toxicol Sci 46(1):83–89

    Article  CAS  PubMed  Google Scholar 

  • Zenser TV, Lakshmi VM, Rustan TD et al (1996) Human N-acetylation of benzidine: role of NAT1 and NAT2. Cancer Res 56(17):3941–3947

    CAS  PubMed  Google Scholar 

  • Zhang X, Lambert JC, Doll MA, Walraven JM, Arteel GE, Hein DW (2006) 4,4′-methylenedianiline-induced hepatotoxicity is modified by N-acetyltransferase 2 (NAT2) acetylator polymorphism in the rat. J Pharmacol Exp Ther 316(1):289–294

    Article  CAS  PubMed  Google Scholar 

  • Zuliani F, Prodi A, Fortina AB, Corradin MT, Bovenzi M, Filon FL (2017) Diaminodiphenylmethane Sensitization in north-eastern Italy from 1996 to 2012. J Eur Acad Dermatol Venereol 31(5):833–836

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We appreciate our collaboration with BioIVT in providing cryoplateable human hepatocytes. The research was supported in part by USPHS grants P20-GM113226 and P42-ES023716. The authors gratefully acknowledge the contribution of the Erasmus+ International Credit Mobility program for faculty and student exchanges funded by the European Union. A preliminary report of this work was presented at the annual meeting of the Society of Toxicology, Baltimore, Maryland, March 2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David W. Hein.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salazar-González, R.A., Zhang, X., Doll, M.A. et al. Role of the human N-acetyltransferase 2 genetic polymorphism in metabolism and genotoxicity of 4, 4′-methylenedianiline. Arch Toxicol 93, 2237–2246 (2019). https://doi.org/10.1007/s00204-019-02516-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-019-02516-4

Keywords

Navigation