Skip to main content

Advertisement

Log in

Experimental and computational insights on the recognition mechanism between the estrogen receptor α with bisphenol compounds

  • Molecular Toxicology
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Certain bisphenols (BPs) have been regarded as endocrine-disrupting chemicals due to their structural similarities to bisphenol A (BPA), a well-known weak estrogenic chemical. However, very limited data are currently available on the relationship between estrogenic activity and the structure of BP analogs. Therefore, we systematically investigated the estrogenic potency of 14 selected BP analogs with typical structures using experimental and computational methods. Most of the tested BP analogs exhibited weak estrogenic activities in both cell proliferation and MVLN assays with the exception of TBBPA, TCBPA and TBBPS. Molecular modeling techniques have been performed to investigate the dynamic structural characteristics of recognition processes between BPs and estrogen receptor α (ERα) at the atomic level. Thr347 was identified as the key residue responsible for the recognition of TBBPA, TCBPA and TBBPS by means of induced-fit H-bonding interactions in the binding pocket of ERα, whereas other BPs, in turn, rely on the alternative formation of H-bonds with His524. Subsequent allosteric modulation interferes significantly with the stability of helix 12 that is crucial for the transcriptional activity of ERα. These structural perturbations that are induced by the three compounds were further confirmed to reduce the recruitment potency of co-activators more than other BPs based on calculations of binding free energies, which is in line with observed experimental transcriptional activities. Our findings may help to elucidate the estrogenic potency of BPs with different molecular structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aarts JM, Wang S, Houtman R et al (2013) Robust array-based coregulator binding assay predicting ERα-Agonist potency and generating binding profiles reflecting ligand structure. Chem Res Toxicol 26(3):336–346

    Article  CAS  PubMed  Google Scholar 

  • Anandakrishnan R, Aguilar B, Onufriev AV (2012) H++ 3.0: automating pK prediction and the preparation of biomolecular structures for atomistic molecular modeling and simulations. Nucl Acid Res 40(W1):W537–W541

    Article  CAS  Google Scholar 

  • Ando S, De Amicis F, Rago V et al (2002) Breast cancer: from estrogen to androgen receptor. Mol Cell Endocrinol 193(1):121–128

    Article  CAS  PubMed  Google Scholar 

  • Andrianou XD, Gängler S, Piciu A, Charisiadis P, Zira C, Aristidou K, Piciu D, Hauser R, Makris KC (2016) Human exposures to bisphenol A, bisphenol F and chlorinated bisphenol a derivatives and thyroid function. PLoS One 11(10):e0155237

    Article  PubMed  PubMed Central  Google Scholar 

  • Berendsen HJ, Postma JPM, van Gunsteren WF, DiNola A, Haak J (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81(8):3684–3690

    Article  CAS  Google Scholar 

  • Bourgoin-Voillard S, Gallo D, Laïos I et al (2010) Capacity of type I and II ligands to confer to estrogen receptor alpha an appropriate conformation for the recruitment of coactivators containing a LxxLL motif—relationship with the regulation of receptor level and ERE-dependent transcription in MCF-7 cells. Biochem Pharmacol 79(5):746–757

    Article  CAS  PubMed  Google Scholar 

  • Bramlett KS, Burris TP (2002) Effects of selective estrogen receptor modulators (SERMs) on coactivator nuclear receptor (NR) box binding to estrogen receptors. Mol Genet Metab 76(3):225–233

    Article  CAS  PubMed  Google Scholar 

  • Bruning JB, Parent AA, Gil G et al (2010) Coupling of receptor conformation and ligand orientation determine graded activity. Nat Chem Biol 6(11):837–843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brzozowski AM, Pike AC, Dauter Z et al (1997) Molecular basis of agonism and antagonism in the oestrogen receptor. Nature 389(6652):753–758

    Article  CAS  PubMed  Google Scholar 

  • Cao H, Sun Y, Wang L, Zhao C, Fu J, Zhang A (2017) Understanding microscopic binding mechanism of hydroxylated and sulfated polybrominated diphenyl ethers with transthyretin by molecular docking, molecular dynamics simulations and binding free energy calculations. Mol Biosyst 13:736–749

    Article  CAS  PubMed  Google Scholar 

  • Carraz M, Zwart W, Phan T, Michalides R, Brunsveld L (2009) Perturbation of estrogen receptor α localization with synthetic nona-arginine LXXLL-peptide coactivator binding inhibitors. Chem Biol 16(7):702–711

    Article  CAS  PubMed  Google Scholar 

  • Chang C, Norris JD, Grøn H et al (1999) Dissection of the LXXLL nuclear receptor-coactivator interaction motif using combinatorial peptide libraries: discovery of peptide antagonists of estrogen receptors α and β. Mol Cell Biol 19(12):8226–8239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen MY, Ike M, Fujita M (2002) Acute toxicity, mutagenicity, and estrogenicity of bisphenol-A and other bisphenols. Environ Toxicol 17(1):80–86

    Article  CAS  PubMed  Google Scholar 

  • Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N·log (N) method for Ewald sums in large systems. J Chem Phys 98(12):10089–10092

    Article  CAS  Google Scholar 

  • Delfosse V, Grimaldi M, Pons JL et al (2012) Structural and mechanistic insights into bisphenols action provide guidelines for risk assessment and discovery of bisphenol A substitutes. Proc Natl Acad Sci USA 109(37):14930–14935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delfosse V, Grimaldi M, Cavailles V, Balaguer P, Bourguet W (2014) Structural and functional profiling of environmental ligands for estrogen receptors. Environ Health Perspect 122(12):1306

    CAS  PubMed  PubMed Central  Google Scholar 

  • Desaulniers D, Leingartner K, Zacharewski T, Foster W (1998) Optimization of an MCF7-E3 cell proliferation assay and effects of environmental pollutants and industrial chemicals. Toxicol In Vitro 12(4):409–422

    Article  CAS  PubMed  Google Scholar 

  • Dickson RB, Lippman ME (1995) Growth factors in breast cancer. Endocr Rev 16(5):559–589

    Article  CAS  PubMed  Google Scholar 

  • Diel IJ, Solomayer EF, Seibel MJ et al (1999) Serum bone sialoprotein in patients with primary breast cancer is a prognostic marker for subsequent bone metastasis. Clin Cancer Res 5(12):3914–3919

    CAS  PubMed  Google Scholar 

  • Fox T, Kollman PA (1998) Application of the RESP methodology in the parametrization of organic solvents. J Phys Chem B 102(41):8070–8079

    Article  CAS  Google Scholar 

  • Han C, Fang S, Cao H, Lu Y, Ma Y, Wei D, Xie X, Liu X, Fei D, Zhao C (2013) Molecular interaction of PCB153 to human serum albumin: insights from spectroscopic and molecular modeling studies. J Hazard Mater 248:313–321

    Article  PubMed  Google Scholar 

  • Hanson RN, Hua E, Adam Hendricks J, Labaree D, Hochberg RB (2012) Synthesis and evaluation of 11β-(4-substituted phenyl) estradiol analogs: transition from estrogen receptor agonists to antagonists. Biorg Med Chem 20(12):3768–3780

    Article  CAS  Google Scholar 

  • Heery DM, Kalkhoven E, Hoare S, Parker MG (1997) A signature motif in transcriptional co-activators mediates binding to nuclear receptors. Nature 387(6634):733–736

    Article  CAS  PubMed  Google Scholar 

  • Henley DV, Korach KS (2006) Endocrine-disrupting chemicals use distinct mechanisms of action to modulate endocrine system function. Endocrinology 147(6):s25–s32

    Article  CAS  PubMed  Google Scholar 

  • Hou T, Wang J, Li Y, Wang W (2011a) Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. J Chem Inf Model 51(1):69–82

    Article  CAS  PubMed  Google Scholar 

  • Hou T, Wang J, Li Y, Wang W (2011b) Assessing the performance of the molecular mechanics/Poisson Boltzmann surface area and molecular mechanics/generalized Born surface area methods. II. The accuracy of ranking poses generated from docking. J Comput Chem 32(5):866–877

    Article  CAS  PubMed  Google Scholar 

  • Jakobsson K, Thuresson K, Rylander L, Sjödin A, Hagmar L, Bergman Å (2002) Exposure to polybrominated diphenyl ethers and tetrabromobisphenol A among computer technicians. Chemosphere 46(5):709–716

    Article  CAS  PubMed  Google Scholar 

  • Jeyakumar M, Carlson KE, Gunther JR, Katzenellenbogen JA (2011) Exploration of dimensions of estrogen potency parsing ligand binding and coactivator binding affinities. J Biol Chem 286(15):12971–12982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79(2):926–935

    Article  CAS  Google Scholar 

  • Kitamura S, Suzuki T, Sanoh S et al (2005) Comparative study of the endocrine-disrupting activity of bisphenol A and 19 related compounds. Toxicol Sci 84(2):249–259

    Article  CAS  PubMed  Google Scholar 

  • Kruse AC, Hu J, Pan AC, Arlow DH, Rosenbaum DM, Rosemond E, Green HF, Liu T, Chae PS, Dror RO, Shaw DE, Weis WI, Wess J, Kobilka BK (2012) Structure and dynamics of the M3 muscarinic acetylcholine receptor. Nature 482(7386):552–556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Burns KA, Arao Y, Luh CJ, Korach KS (2012) Differential estrogenic actions of endocrine-disrupting chemicals bisphenol A, bisphenol AF, and zearalenone through estrogen receptor α and β in vitro. Environ Health Perspect 120(7):1029–1035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Luh CJ, Burns KA et al (2013) Endocrine-disrupting chemicals (EDCs). In vitro mechanism of estrogenic activation and differential effects on ER target genes. Environ Health Perspect 121(4):459–466

    PubMed  PubMed Central  Google Scholar 

  • Liu H, An X, Li S, Wang Y, Li J, Liu H (2015) Interaction mechanism exploration of R-bicalutamide/S-1 with WT/W741L AR using molecular dynamics simulations. Mol Biosyst 11(12):3347–3354

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Li J, Wu Y, Zhao Y, Luo F, Li S, Yang L, Moez EK, Dinu I, Martin JW (2017) Bisphenol A metabolites and bisphenol S in paired maternal and cord serum. Environ Sci Technol 51(4):2456–2463

    Article  CAS  PubMed  Google Scholar 

  • Maier JA, Martinez C, Kasavajhala K, Wickstrom L, Hauser KE, Simmerling C (2015) ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J Chem Theory Comput 11(8):3696–3713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Margeat E, Poujol N, Boulahtouf A et al (2001) The human estrogen receptor α dimer binds a single SRC-1 coactivator molecule with an affinity dictated by agonist structure. J Mol Biol 306(3):433–442

    Article  CAS  PubMed  Google Scholar 

  • Metskas LA, Rhoades E (2015) Conformation and dynamics of the troponin I C-terminal domain: combining single-molecule and computational approaches for a disordered protein region. J Am Chem Soc 137(37):11962–11969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller BR III, McGee TD Jr, Swails JM, Homeyer N, Gohlke H, Roitberg AE (2012) MMPBSA. py: an efficient program for end-state free energy calculations. J Chem Theory Comput 8(9):3314–3321

    Article  CAS  PubMed  Google Scholar 

  • Molina-Molina JM, Amaya E, Grimaldi M et al (2013) In vitro study on the agonistic and antagonistic activities of bisphenol-S and other bisphenol-A congeners and derivatives via nuclear receptors. Toxicol Appl Pharmacol 272(1):127–136

    Article  CAS  PubMed  Google Scholar 

  • Mongan J, Simmerling C, McCammon JA, Case DA, Onufriev A (2007) Generalized Born model with a simple, robust molecular volume correction. J Chem Theory Comput 3(1):156–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ng HW, Shu M, Luo H et al (2015) Estrogenic activity data extraction and in silico prediction show the endocrine disruption potential of bisphenol a replacement compounds. Chem Res Toxicol 28(9):1784–1795

    Article  CAS  PubMed  Google Scholar 

  • Onufriev A, Bashford D, Case DA (2004) Exploring protein native states and large-scale conformational changes with a modified generalized born model. Proteins Struct Funct Bioinf 55(2):383–394

    Article  CAS  Google Scholar 

  • Osborne CK, Clemmons DR, Arteaga CL (1990) Regulation of breast cancer growth by insulin-like growth factors. J Steroid Biochem Mol Biol 37(6):805–809

    Article  CAS  PubMed  Google Scholar 

  • Pike AC, Brzozowski AM, Walton J et al (2001) Structural insights into the mode of action of a pure antiestrogen. Structure 9(2):145–153

    Article  CAS  PubMed  Google Scholar 

  • Ren XM, Zhang YF, Guo LH, Qin ZF, Lv QY, Zhang LY (2015) Structure–activity relations in binding of perfluoroalkyl compounds to human thyroid hormone T3 receptor. Arch Toxicol 89(2):233–242

    Article  CAS  PubMed  Google Scholar 

  • Riu A, Grimaldi M, le Maire A et al (2011) Peroxisome proliferator-activated receptor γ is a target for halogenated analogs of bisphenol A. Environ Health Perspect 119(9):1227–1232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson DR, Wu YM, Vats P et al (2013) Activating ESR1 mutations in hormone-resistant metastatic breast cancer. Nat Genet 45(12):1446–1451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roe DR, Cheatham TE III (2013) PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. J Chem Theory Comput 9(7):3084–3095

    Article  CAS  PubMed  Google Scholar 

  • Rosenmai AK, Dybdahl M, Pedersen M et al (2014) Are structural analogues to bisphenol A safe alternatives? Toxicol Sci 139(1):35–47

    Article  CAS  PubMed  Google Scholar 

  • Ruan T, Liang D, Song S, Song M, Wang H, Jiang G (2015) Evaluation of the in vitro estrogenicity of emerging bisphenol analogs and their respective estrogenic contributions in municipal sewage sludge in China. Chemosphere 124:150–155

    Article  CAS  PubMed  Google Scholar 

  • Ryckaert JP, Ciccotti G, Berendsen HJ (1977) Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23(3):327–341

    Article  CAS  Google Scholar 

  • Salomon-Ferrer R, Götz AW, Poole D, Le GS, Walker RC (2013) Routine microsecond molecular dynamics simulations with AMBER on GPUs. 2. Explicit solvent particle mesh Ewald. J Chem Theory Comput 9(9):3878–3888

    Article  CAS  PubMed  Google Scholar 

  • Sheng N, Li J, Liu H, Zhang A, Dai J (2016) Interaction of perfluoroalkyl acids with human liver fatty acid-binding protein. Arch Toxicol 90(1):217–227

    Article  CAS  PubMed  Google Scholar 

  • Shiau AK, Barstad D, Loria PM et al (1998) The structural basis of estrogen receptor/coactivator recognition and the antagonism of this interaction by tamoxifen. Cell 95(7):927–937

    Article  CAS  PubMed  Google Scholar 

  • Sindhikara DJ, Kim S, Voter AF, Roitberg AE (2009) Bad seeds sprout perilous dynamics: stochastic thermostat induced trajectory synchronization in biomolecules. J Chem Theory Comput 5(6):1624–1631

    Article  CAS  PubMed  Google Scholar 

  • Singh T, Adekoya OA, Jayaram B (2015) Understanding the binding of inhibitors of matrix metalloproteinases by molecular docking, quantum mechanical calculations, molecular dynamics simulations, and a MMGBSA/MMBappl study. Mol BioSyst 11(4):1041–1051

    Article  CAS  PubMed  Google Scholar 

  • Song M, Xu Y, Jiang Q et al (2006) Measurement of estrogenic activity in sediments from Haihe and Dagu River, China. Environ Int 32(5):676–681

    Article  PubMed  Google Scholar 

  • Song M, Liang D, Liang Y et al (2014) Assessing developmental toxicity and estrogenic activity of halogenated bisphenol A on zebrafish (Danio rerio). Chemosphere 112:275–281

    Article  CAS  PubMed  Google Scholar 

  • Teng C, Goodwin B, Shockley K et al (2013) Bisphenol A affects androgen receptor function via multiple mechanisms. Chem Biol Interact 203(3):556–564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van der Burg B, Rutteman GR, Blankenstein MA, de Laat SW, van Zoelen EJ (1988) Mitogenic stimulation of human breast cancer cells in a growth factor-defined medium: synergistic action of insulin and estrogen. J Cell Physiol 134(1):101–108

    Article  PubMed  Google Scholar 

  • Vandenberg LN, Maffini MV, Wadia PR, Sonnenschein C, Rubin BS, Soto AM (2007) Exposure to environmentally relevant doses of the xenoestrogen bisphenol-A alters development of the fetal mouse mammary gland. Endocrinology 148(1):116–127

    Article  CAS  PubMed  Google Scholar 

  • Vom Saal FS, Akingbemi BT, Belcher SM et al (2007) Chapel Hill bisphenol A expert panel consensus statement: integration of mechanisms, effects in animals and potential to impact human health at current levels of exposure. Reprod Toxicol 24(2):131–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25(9):1157–1174

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Sun H, Yao X et al (2016) Comprehensive evaluation of ten docking programs on a diverse set of protein–ligand complexes: the prediction accuracy of sampling power and scoring power. Phys Chem Chem Phys 18(18):12964–12975

    Article  CAS  PubMed  Google Scholar 

  • Weiser J, Shenkin PS, Still WC (1999) Approximate atomic surfaces from linear combinations of pairwise overlaps (LCPO). J Comput Chem 20(2):217–230

    Article  CAS  Google Scholar 

  • Yang CZ, Yaniger SI, Jordan VC, Klein DJ, Bittner GD (2011) Most plastic products release estrogenic chemicals: a potential health problem that can be solved. Environ Health Perspect 119(7):989–996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Lv QY, Guo LH, Wan B, Ren XM, Shi YL, Cai YQ (2017) Identification of protein tyrosine phosphatase SHP-2 as a new target of perfluoroalkyl acids in HepG2 cells. Arch Toxicol 91:1697–1707

    Article  CAS  PubMed  Google Scholar 

  • Zhao G, Perilla JR, Yufenyuy EL, Meng X, Chen B, Ning J, Ahn J, Gronenborn AM, Schulten K, Aiken C, Zhang P (2013) Mature HIV-1 capsid structure by cryo-electron microscopy and all-atom molecular dynamics. Nature 497(7451):643–646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was jointly supported in part by Chinese Academy of Sciences (XDB14030500, YSW2013B01), the National Natural Science Foundation (21177146), the National High Technology Research and Development Program (863) of China (2013AA065201), and the State Key Laboratory of Microbial Technology Open Projects Fund (M2015-07).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aiqian Zhang or Maoyong Song.

Ethics declarations

Conflict of interest

The authors’ declares that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2018 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, H., Wang, F., Liang, Y. et al. Experimental and computational insights on the recognition mechanism between the estrogen receptor α with bisphenol compounds. Arch Toxicol 91, 3897–3912 (2017). https://doi.org/10.1007/s00204-017-2011-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-017-2011-0

Keywords

Navigation