Skip to main content
Log in

In vivo cardiomyocyte response to YTX- and AZA-1-induced damage: autophagy versus apoptosis

  • Organ Toxicity and Mechanisms
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Yessotoxins (YTX) and azaspiracids (AZAs) are marine toxins produced by phytoplanktonic dinoflagellates that get accumulated in filter feeding shellfish and finally reach human consumers through the food web. Both toxin classes are worldwide distributed, and food safety authorities have regulated their content in shellfish in many countries. Recently, YTXs and AZAs have been described as compounds with subacute cardiotoxic potential in rats owed to alterations of the cardiovascular function and ultrastructural heart damage. These molecules are also well known in vitro inducers of cell death. The aim of this study was to explore the presence of cardiomyocyte death after repeated subacute exposure of rats to AZA-1 and YTX for 15 days. Because autophagy and apoptosis are often found in dying cardiomyocytes, several autophagic and apoptotic markers were determined by western blot in heart tissues of these rats. The results showed that hearts from YTX-treated rats presented increased levels of the autophagic markers microtubule-associated protein light chain 3-II (LC3-II) and beclin-1, nevertheless AZA-1-treated hearts evidenced increased levels of the apoptosis markers cleaved caspase-3 and -8, cleaved PARP and Fas ligand. Therefore, while YTX-induced damage to the heart triggers autophagic processes, apoptosis activation occurs in the case of AZA-1. For the first time, activation of cell death signals in cardiomyocytes is demonstrated for these toxins with in vivo experiments, which may be related to alterations of the cardiovascular function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alfonso A, de la Rosa L, Vieytes MR, Yasumoto T, Botana LM (2003) Yessotoxin, a novel phycotoxin, activates phosphodiesterase activity. Effect of yessotoxin on cAMP levels in human lymphocytes. Biochem Pharmacol 65(2):193–208

    Article  CAS  PubMed  Google Scholar 

  • Alfonso A, Roman Y, Vieytes MR et al (2005) Azaspiracid-4 inhibits Ca2+ entry by stored operated channels in human T lymphocytes. Biochem Pharmacol 69(11):1627–1636

    Article  CAS  PubMed  Google Scholar 

  • Bishopric NH, Andreka P, Slepak T, Webster KA (2001) Molecular mechanisms of apoptosis in the cardiac myocyte. Curr Opin Pharmacol 1(2):141–150

    Article  CAS  PubMed  Google Scholar 

  • Buja LM, Vela D (2008) Cardiomyocyte death and renewal in the normal and diseased heart. Cardiovasc Pathol 17(6):349–374

    Article  PubMed  Google Scholar 

  • de la Rosa LA, Alfonso A, Vilarino N, Vieytes MR, Botana LM (2001) Modulation of cytosolic calcium levels of human lymphocytes by yessotoxin, a novel marine phycotoxin. Biochem Pharmacol 61(7):827–833

    Article  PubMed  Google Scholar 

  • Dhesi P, Tehrani F, Fuess J, Schwarz ER (2010) How does the heart (not) die? The role of autophagy in cardiomyocyte homeostasis and cell death. Heart Fail Rev 15(1):15–21

    Article  PubMed  Google Scholar 

  • Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35(4):495–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • European Comission Regulation (2004) (EC) No. 853/2004 of the European Parliament and of the Council of 29 April 2004 laying down specific hygiene rules for food animal origin. Off J Eur Commun Annex III, Sect VIII, Chap V, 2. L 226:60–61

  • Fernandez-Araujo A, Tobio A, Alfonso A, Botana LM (2014) Role of AKAP 149-PKA-PDE4A complex in cell survival and cell differentiation processes. Int J Biochem Cell Biol 53C:89–101

    Article  Google Scholar 

  • Fernandez-Araujo A, Alfonso A, Vieytes M, Botana L (2015) Key role of phosphodiesterase 4A (PDE4A) in autophagy triggered by yessotoxin. Toxicology 329:60–72

    Article  CAS  PubMed  Google Scholar 

  • Ferreiro SF, Vilariño N, Carrera C et al (2014a) In vivo arrhythmogenicity of the marine biotoxin azaspiracid-2 in rats. Arch Toxicol 88(2):425–434

    Article  CAS  PubMed  Google Scholar 

  • Ferreiro SF, Vilariño N, Louzao MC, Nicolaou KC, Frederick MO, Botana LM (2014b) In vitro chronic effects on hERG channel caused by the marine biotoxin azaspiracid-2. Toxicon 91:69–75

    Article  CAS  PubMed  Google Scholar 

  • Ferreiro SF, Vilarino N, Carrera C et al (2016a) Subacute cardiotoxicity of yessotoxin. In vitro and in vivo studies. Chem Res Toxicol 29(6):981–990

    Article  CAS  PubMed  Google Scholar 

  • Ferreiro SF, Vilarino N, Carrera C et al (2016b) Subacute cardiovascular toxicity of the marine phycotoxin azaspiracid-1 in rats. Toxicol Sci 151(1):104–114

    Article  CAS  PubMed  Google Scholar 

  • Furey A, O’Doherty S, O’Callaghan K, Lehane M, James KJ (2010) Azaspiracid poisoning (AZP) toxins in shellfish: toxicological and health considerations. Toxicon 56(2):173–190

    Article  CAS  PubMed  Google Scholar 

  • Gurusamy N, Das DK (2009) Autophagy, redox signaling, and ventricular remodeling. Antioxid Redox Signal 11(8):1975–1988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gustafsson AB, Gottlieb RA (2008) Recycle or die: the role of autophagy in cardioprotection. J Mol Cell Cardiol 44(4):654–661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • James KJ, Fidalgo Saez MJ, Furey A, Lehane M (2004) Azaspiracid poisoning, the food-borne illness associated with shellfish consumption. Food Addit Contam 21(9):879–892

    Article  CAS  PubMed  Google Scholar 

  • Jung CH, Ro SH, Cao J, Otto NM, Kim DH (2010) mTOR regulation of autophagy. FEBS Lett 584(7):1287–1295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kemp CD, Conte JV (2012) The pathophysiology of heart failure. Cardiovasc Pathol 21(5):365–371

    Article  CAS  PubMed  Google Scholar 

  • Kolattukudy PE, Niu J (2012) Inflammation, endoplasmic reticulum stress, autophagy, and the monocyte chemoattractant protein-1/CCR2 pathway. Circ Res 110(1):174–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korsnes MS (2012) Yessotoxin as a tool to study induction of multiple cell death pathways. Toxins (Basel) 4(7):568–579

    Article  CAS  Google Scholar 

  • Korsnes MS, Hetland DL, Espenes A, Aune T (2006) Induction of apoptosis by YTX in myoblast cell lines via mitochondrial signalling transduction pathway. Toxicol In Vitro 20(8):1419–1426

    Article  CAS  PubMed  Google Scholar 

  • Korsnes MS, Hetland DL, Espenes A, Aune T (2007) Cleavage of tensin during cytoskeleton disruption in YTX-induced apoptosis. Toxicol In Vitro 21(1):9–15

    Article  CAS  PubMed  Google Scholar 

  • Lee Y, Gustafsson AB (2009) Role of apoptosis in cardiovascular disease. Apoptosis 14(4):536–548

    Article  PubMed  Google Scholar 

  • Manning BD, Cantley LC (2007) AKT/PKB signaling: navigating downstream. Cell 129(7):1261–1274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MCMahon T, Silke J (1996) Winter toxicity of unknown aetiology in mussels. Harmful Algae 14:2

    Google Scholar 

  • Miyamoto S, Rubio M, Sussman MA (2009) Nuclear and mitochondrial signalling Akts in cardiomyocytes. Cardiovasc Res 82(2):272–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moulin M, Piquereau J, Mateo P et al (2015) Sexual dimorphism of doxorubicin-mediated cardiotoxicity: potential role of energy metabolism remodeling. Circ Heart Fail 8(1):98–108

    Article  CAS  PubMed  Google Scholar 

  • Munday R, Aune T, Rossini GP (2008) Toxicology of the yessotoxins. In: Botana LM (ed) Seafood and freshwater toxins pharmacology. CRC Press Boca Ratón, Physiol Detect, pp 329–339

    Google Scholar 

  • Murata M, Shimatani M, Sugitani H, Oshima Y, Yasumoto T (1987) Isolation and structural elucidation of the causative toxin of the diarrhetic shellfish poisoning. Bull Jpn Soc Sci Fish 48:549–552

    Article  Google Scholar 

  • Nishida K, Otsu K (2008) Cell death in heart failure. Circ J 72(Suppl A):A17-21

    PubMed  Google Scholar 

  • Petrovski G, Das S, Juhasz B, Kertesz A, Tosaki A, Das DK (2011) Cardioprotection by endoplasmic reticulum stress-induced autophagy. Antioxid Redox Signal 14(11):2191–2200

    Article  CAS  PubMed  Google Scholar 

  • Reinartz M, Raupach A, Kaisers W, Godecke A (2014) AKT1 and AKT2 induce distinct phosphorylation patterns in HL-1 cardiac myocytes. J Proteome Res 13(10):4232–4245

    Article  CAS  PubMed  Google Scholar 

  • Ronzitti G, Callegari F, Malaguti C, Rossini GP (2004) Selective disruption of the E-cadherin-catenin system by an algal toxin. Br J Cancer 90(5):1100–1107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rubiolo JA, Lopez-Alonso H, Martinez P et al (2014) Yessotoxin induces ER-stress followed by autophagic cell death in glioma cells mediated by mTOR and BNIP3. Cell Signal 26(2):419–432

    Article  CAS  PubMed  Google Scholar 

  • Satake M, Ofuji K, Naoki H et al (1998) Azaspiracid, a new marine toxin having unique spiro ring assemblies, isolated from Irish mussels, Mytilus edulis. J Am Chem Soc 120(38):9967–9968

    Article  CAS  Google Scholar 

  • Takemura G, Kanoh M, Minatoguchi S, Fujiwara H (2013) Cardiomyocyte apoptosis in the failing heart—a critical review from definition and classification of cell death. Int J Cardiol 167(6):2373–2386

    Article  PubMed  Google Scholar 

  • Terao K, Ito E, Oarada M, Murata M, Yasumoto T (1990) Histopathological studies on experimental marine toxin poisoning—5. The effects in mice of yessotoxin isolated from Patinopecten yessoensis and of a desulfated derivative. Toxicon 28(9):1095–1104

    Article  CAS  PubMed  Google Scholar 

  • Tillmann U, Elbrächter M, Krock B, John U, Cembella A (2009) Azadinium spinosum gen. et sp. nov. (Dinophyceae) identified as a primary producer of azaspiracid toxins. Eur J Phycol 44(1):63–79

    Article  CAS  Google Scholar 

  • Toker A, Marmiroli S (2014) Signaling specificity in the Akt pathway in biology and disease. Adv Biol Regul 55:28–38

    Article  CAS  PubMed  Google Scholar 

  • Tubaro A, Dell’ovo V, Sosa S, Florio C (2010) Yessotoxins: a toxicological overview. Toxicon 56(2):163–172

    Article  CAS  PubMed  Google Scholar 

  • Twiner MJ, Doucette GJ, Rasky A, Huang XP, Roth BL, Sanguinetti MC (2012a) Marine algal toxin azaspiracid is an open-state blocker of HERG potassium channels. Chem Res Toxicol 25(9):1975–1984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Twiner MJ, Hanagriff JC, Butler S, Madhkoor AK, Doucette GJ (2012b) Induction of apoptosis pathways in several cell lines following exposure to the marine algal toxin azaspiracid. Chem Res Toxicol 25(7):1493–1501

    Article  CAS  PubMed  Google Scholar 

  • Vilariño N, Nicolaou KC, Frederick MO et al (2006) Cell growth inhibition and actin cytoskeleton disorganization induced by azaspiracid-1 structure-activity studies. Chem Res Toxicol 19(11):1459–1466

    Article  PubMed  Google Scholar 

  • Vilariño N, Nicolaou KC, Frederick MO et al (2008) Azaspiracid substituent at C1 is relevant to in vitro toxicity. Chem Res Toxicol 21(9):1823–1831

    Article  PubMed  PubMed Central  Google Scholar 

  • Wesselborg S, Stork B (2015) Autophagy signal transduction by ATG proteins: from hierarchies to networks. Cell Mol Life Sci 72(24):4721–4757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The research leading to these results has received funding from the following FEDER cofunded grants. From CDTI and Technological Funds, supported by Ministerio de Economía y Competitividad, AGL2012-40185-CO2-01, AGL2014-58210-R, and Consellería de Cultura, Educación e Ordenación Universitaria, GRC2013-016. From CDTI under ISIP Programme, Spain, IDI-20130304 APTAFOOD. From the European Union’s Seventh Framework Programme managed by REA—Research Executive Agency (FP7/2007-2013) under grant agreement 312184 PHARMASEA.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Natalia Vilariño or Luis M. Botana.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 5244 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferreiro, S.F., Vilariño, N., Carrera, C. et al. In vivo cardiomyocyte response to YTX- and AZA-1-induced damage: autophagy versus apoptosis. Arch Toxicol 91, 1859–1870 (2017). https://doi.org/10.1007/s00204-016-1862-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-016-1862-0

Keywords

Navigation