Skip to main content

Advertisement

Log in

Platinum(IV)-nitroxyl complexes as possible candidates to circumvent cisplatin resistance in RT112 bladder cancer cells

  • Molecular Toxicology
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

The therapeutic efficacy of the anticancer drug cisplatin is limited by the development of resistance. We therefore investigated newly synthesized platinum-nitroxyl complexes (PNCs) for their potential to circumvent cisplatin resistance. The complexes used were PNCs with bivalent cis-PtII(R·NH2)(NH3)Cl2 and cis-PtII(DAPO)Ox and four-valent platinum cis,trans,cis-PtIV(R·NH2)(NH3)(OR)2Cl2 and cis,trans,cis-PtIV(DAPO)(OR)2Ox, where R· are TEMPO or proxyl nitroxyl radicals, DAPO is trans-3,4-diamino-2,2,6,6-tetramethylpiperidine-1-oxyl, and OR and Ox are carboxylato and oxalato ligands, respectively. The complexes were characterized by spectroscopic methods, HPLC, log P ow data and elemental analysis. We studied intracellular platinum accumulation, DNA platination and cytotoxicity upon treatment with the PNCs in a model system of the bladder cancer cell line RT112 and its cisplatin-resistant subline RT112-CP. Platinum accumulation and DNA platination were similar in RT112 and RT112-CP cells for both bivalent and four-valent PNCs, in contrast to cisplatin for which a reduction in intracellular accumulation and DNA platination was observed in the resistant subline. The PNCs were found to platinate DNA in relation to the length of their axial RO-ligands. Furthermore, the PNCs were increasingly toxic in relation to the elongation of their axial RO-ligands, with similar toxicities in RT112 and its cisplatin-resistant subline. Using a cell-free assay, we observed induction of oxidative DNA damage by cisplatin but not PNCs suggesting that cisplatin exerts its toxic action by platination and oxidative DNA damage, while cells treated with PNCs are protected against oxidatively induced lesions. Altogether, our study suggests that PNCs may provide a more effective treatment for tumors which have developed resistance toward cisplatin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Andersson A, Fagerberg J, Lewensohn R, Ehrsson H (1996) Pharmacokinetics of cisplatin and its monohydrated complex in humans. J Pharm Sci 85:824–827

    Article  CAS  PubMed  Google Scholar 

  • Asmuss M, Mullenders LH, Eker A, Hartwig A (2000) Differential effects of toxic metal compounds on the activities of Fpg and XPA, two zinc finger proteins involved in DNA repair. Carcinogenesis 21:2097–2104

    Article  CAS  PubMed  Google Scholar 

  • Basu A, Krishnamurthy S (2010) Cellular responses to Cisplatin-induced DNA damage. J Nucleic Acids. doi:10.4061/2010/201367

  • Boiteux S, Bichara M, Fuchs RP, Laval J (1989) Excision of the imidazole ring-opened form of N-2-aminofluorene-C(8)-guanine adduct in poly(dG-dC) by Escherichia coli formamidopyrimidine-DNA glycosylase. Carcinogenesis 10:1905–1909

    Article  CAS  PubMed  Google Scholar 

  • Bragado P, Armesilla A, Silva A, Porras A (2007) Apoptosis by cisplatin requires p53 mediated p38alpha MAPK activation through ROS generation. Apoptosis 12:1733–1742

    Article  CAS  PubMed  Google Scholar 

  • Brozovic A, Osmak M (2007) Activation of mitogen-activated protein kinases by cisplatin and their role in cisplatin-resistance. Cancer Lett 251:1–16

    Article  CAS  PubMed  Google Scholar 

  • Cadet J, Wagner JR (2013) DNA base damage by reactive oxygen species, oxidizing agents, and UV radiation. Cold Spring Harb Perspect Biol 5:a012599

    Article  Google Scholar 

  • Dasari S, Tchounwou PB (2014) Cisplatin in cancer therapy: molecular mechanisms of action. Eur J Pharmacol 740:364–378

    Article  CAS  PubMed  Google Scholar 

  • Eadsforth C, Moser P (1983) Assessment of reverse-phase chromatographic methods for determining partition coefficients. Chemosphere 12:1459–1475

    Article  CAS  Google Scholar 

  • Giandomenico CM et al (1995) Carboxylation of kinetically inert platinum(IV) hydroxy complexes. An entrée into orally active platinum(IV) antitumor agents. Inorg Chem 34:1015–1021

    Article  CAS  PubMed  Google Scholar 

  • Hall MD, Okabe M, Shen DW, Liang XJ, Gottesman MM (2008) The role of cellular accumulation in determining sensitivity to platinum-based chemotherapy. Annu Rev Pharmacol Toxicol 48:495–535

    Article  CAS  PubMed  Google Scholar 

  • Hector S, Bolanowska-Higdon W, Zdanowicz J, Hitt S, Pendyala L (2001) In vitro studies on the mechanisms of oxaliplatin resistance. Cancer Chemother Pharmacol 48:398–406

    Article  CAS  PubMed  Google Scholar 

  • Ishida S, Lee J, Thiele DJ, Herskowitz I (2002) Uptake of the anticancer drug cisplatin mediated by the copper transporter Ctr1 in yeast and mammals. Proc Natl Acad Sci USA 99:14298–14302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishida S, McCormick F, Smith-McCune K, Hanahan D (2010) Enhancing tumor-specific uptake of the anticancer drug cisplatin with a copper chelator. Cancer Cell 17:574–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jandial DD, Farshchi-Heydari S, Larson CA, Elliott GI, Wrasidlo WJ, Howell SB (2009) Enhanced delivery of cisplatin to intraperitoneal ovarian carcinomas mediated by the effects of bortezomib on the human copper transporter 1. Clin Cancer Res 15:553–560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelland L (2007) Broadening the clinical use of platinum drug-based chemotherapy with new analogues. Satraplatin and picoplatin. Expert Opin Investig Drugs 16:1009–1021

    Article  CAS  PubMed  Google Scholar 

  • Kilari D, Guancial E, Kim ES (2016) Role of copper transporters in platinum resistance. World J Clin Oncol 7:106–113

    Article  PubMed  PubMed Central  Google Scholar 

  • Köberle B, Payne J, Grimaldi KA, Hartley JA, Masters JRW (1996) DNA-repair in cisplatin-sensitive and resistant human cell-lines measured in specific genes by quantitative polymerase chain-reaction. Biochem Pharmacol 52:1729–1734

    Article  PubMed  Google Scholar 

  • Köberle B, Tomicic MT, Usanova S, Kaina B (2010) Cisplatin resistance: preclinical findings and clinical implications. Biochim Biophys Acta 1806:172–182

    PubMed  Google Scholar 

  • Koepsell H, Endou H (2004) The SLC22 drug transporter family. Pflugers Arch 447:666–676

    Article  CAS  PubMed  Google Scholar 

  • Koga H, Kotoh S, Nakashima M, Yokomizo A, Tanaka M, Naito S (2000) Accumulation of intracellular platinum is correlated with intrinsic cisplatin resistance in human bladder cancer cell lines. Int J Oncol 16:1003–1007

    CAS  PubMed  Google Scholar 

  • Kuo MT, Chen HH, Song IS, Savaraj N, Ishikawa T (2007) The roles of copper transporters in cisplatin resistance. Cancer Metastasis Rev 26:71–83

    Article  CAS  PubMed  Google Scholar 

  • Kuo MT, Fu S, Savaraj N, Chen HH (2012) Role of the human high-affinity copper transporter in copper homeostasis regulation and cisplatin sensitivity in cancer chemotherapy. Cancer Res 72:4616–4621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang ZD et al (2012) Mechanistic basis for overcoming platinum resistance using copper chelating agents. Mol Cancer Ther 11:2483–2494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loh SY, Mistry P, Kelland LR, Abel G, Harrap KR (1992) Reduced drug accumulation as a major mechanism of acquired resistance to cisplatin in a human ovarian carcinoma cell line: circumvention studies using novel platinum (II) and (IV) ammine/amine complexes. Br J Cancer 66:1109–1115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marullo R et al (2013) Cisplatin induces a mitochondrial-ROS response that contributes to cytotoxicity depending on mitochondrial redox status and bioenergetic functions. PLoS ONE 8:e81162

    Article  PubMed  PubMed Central  Google Scholar 

  • Masters JR et al (1986) Tissue culture model of transitional cell carcinoma: characterization of twenty-two human urothelial cell lines. Cancer Res 46:3630–3636

    CAS  PubMed  Google Scholar 

  • Masuda H, Tanaka T, Takahama U (1994) Cisplatin generates superoxide anion by interaction with DNA in a cell-free system. Biochem Biophys Res Commun 203:1175–1180

    Article  CAS  PubMed  Google Scholar 

  • Mellish KJ, Kelland LR, Harrap KR (1993) In vitro drug chemosensitivity of human cervical squamous cell carcinoma cell lines with intrinsic and acquired resistance to cisplatin. Br J Cancer 68:240–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • OECD Guidelines for the Testing of Chemicals (2004) Test No 117: Partition coefficient (n-octanol/water); HPLC method. OECD Publishing, Paris

    Google Scholar 

  • Oldenburg J et al (1994) Characterization of resistance mechanisms to cis-diamminedichloroplatinum(II) in three sublines of the CC531 colon adenocarcinoma cell line in vitro. Cancer Res 54:487–493

    CAS  PubMed  Google Scholar 

  • Pabla N, Huang S, Mi Q-S, Daniel R, Dong Z (2008) ATR-Chk2 signaling in p53 activation and DNA damage response during cisplatin-induced apoptosis. J Biol Chem 283:6572–6583

    Article  CAS  PubMed  Google Scholar 

  • Pliss E, Sen V, Tichonov I (2013) Nitroxyl radicals in chemical and biological processes. LAP Lambert AP, Saarbrücken (in Russian)

  • Rabik CA, Dolan ME (2007) Molecular mechanisms of resistance and toxicity associated with platinating agents. Cancer Treat Rev 33:9–23

    Article  CAS  PubMed  Google Scholar 

  • Rixe O et al (1996) Oxaliplatin, tetraplatin, cisplatin and carboplatin: spectrum of activity in drug-resistant cell lines and in the cell lines of the National Cancer Institute’s Anticancer Drug screen panel. Biochem Pharmacol 52:1855–1865

    Article  CAS  PubMed  Google Scholar 

  • Samimi G, Howell SB (2006) Modulation of the cellular pharmacology of JM118, the major metabolite of satraplatin, by copper influx and efflux transporters. Cancer Chemother Pharmacol 57:781–788

    Article  CAS  PubMed  Google Scholar 

  • Sen VD, Golubev VA, Volkova LM, Konovalova NP (1996) Synthesis and antitumor activity of platinum(II) complexes with trans-3,4-diamino-2,2,6,6-tetramethylpiperidine-1-oxyl. J Inorg Biochem 64:69–77

    Article  CAS  PubMed  Google Scholar 

  • Sen VD et al (2000) Synthesis, structure, and biological activity of mixed-ligand platinum(II) complexes with aminonitroxides. Russ Chem Bull 49:1613–1619

    Article  CAS  Google Scholar 

  • Sen VD, Tkachev VV, Volkova LM, Goncharova SA, Raevskaya TA, Konovalova NP (2003) Synthesis, structure, and antitumor properties of platinum(IV) complexes with aminonitroxyl radicals. Russ Chem Bull 52:421–426

    Article  CAS  Google Scholar 

  • Sen VD, Goluvev A, Lugovskaya NY, Sashenkova TE, Konovolova NP (2006) Synthesis and antitumor properties of new platinum(IV) complexes with aminonitroxyl radicals. Russ Chem Bull 55:62–65

    Article  CAS  Google Scholar 

  • Sen VD, Terentiev AA, Konovalova NP (2012) Platinum complexes with bioactive nitroxyl radicals: synthesis and antitumor properties. In: Kokorin AI (ed) Nitroxides: theory, experiment and applications. InTech, Rijeka, pp 385–406

    Google Scholar 

  • Shen DW, Goldenberg S, Pastan I, Gottesman MM (2000) Decreased accumulation of [14C]carboplatin in human cisplatin-resistant cells results from reduced energy-dependent uptake. J Cell Physiol 183:108–116

    Article  CAS  PubMed  Google Scholar 

  • Siddik ZH (2003) Cisplatin: mode of action and molecular basis of resistance. Oncogene 22:7265–7279

    Article  CAS  PubMed  Google Scholar 

  • Song IS et al (2004) Role of human copper transporter Ctr1 in the transport of platinum-based antitumor agents in cisplatin-sensitive and cisplatin-resistant cells. Mol Cancer Ther 3:1543–1549

    CAS  PubMed  Google Scholar 

  • Stewart DJ et al (1988) Platinum concentrations in human autopsy tumor samples. Am J Clin Oncol 11:152–158

    Article  CAS  PubMed  Google Scholar 

  • Suy S, Mitchell JB, Samuni A, Mueller S, Kasid U (2005) Nitroxide tempo, a small molecule, induces apoptosis in prostate carcinoma cells and suppresses tumor growth in athymic mice. Cancer 103:1302–1313

    Article  CAS  PubMed  Google Scholar 

  • Timmer-Bosscha H et al (1993) Cis-diamminedichloroplatinum(II) resistance in vitro and in vivo in human embryonal carcinoma-cells. Cancer Res 53:5707–5713

    CAS  PubMed  Google Scholar 

  • Walker MC, Povey S, Parrington JM, Riddle PN, Knuechel R, Masters JR (1990) Development and characterization of cisplatin-resistant human testicular and bladder tumour cell lines. Eur J Cancer 26:742–747

    Article  CAS  PubMed  Google Scholar 

  • Wheate NJ, Walker S, Craig GE, Oun R (2010) The status of platinum anticancer drugs in the clinic and in clinical trials. Dalton Trans 39:8113–8127

    Article  CAS  PubMed  Google Scholar 

  • Wilcox CS (2010) Effects of tempol and redox-cycling nitroxides in models of oxidative stress. Pharmacol Ther 126:119–145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao X, Panichpisal K, Kurtzman N, Nugent K (2007) Cisplatin nephrotoxicity: a review. Am J Med Sci 334:115–124

    Article  PubMed  Google Scholar 

  • Zisowsky J et al (2007) Relevance of drug uptake and efflux for cisplatin sensitivity of tumor cells. Biochem Pharmacol 73:298–307

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

High-resolution ESMS spectra were recorded in the Department of Structural Studies of Zelinsky Institute of Organic Chemistry, Moscow. The work was supported by Deutsche Forschungsgemeinschaft (DFG), Exzellenzinitiative KIT and Russian Scientific Fund (RSF) Grant No. 14-23-00018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beate Köberle.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Maria Cetraz and Vasily Sen have contributed equally to the study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 357 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cetraz, M., Sen, V., Schoch, S. et al. Platinum(IV)-nitroxyl complexes as possible candidates to circumvent cisplatin resistance in RT112 bladder cancer cells. Arch Toxicol 91, 785–797 (2017). https://doi.org/10.1007/s00204-016-1754-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-016-1754-3

Keywords

Navigation