Skip to main content
Log in

Hydroquinone-induced FOXP3-ADAM17-Lyn-Akt-p21 signaling axis promotes malignant progression of human leukemia U937 cells

  • Genotoxicity and Carcinogenicity
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Hydroquinone (1,4-benzenediol; HQ), a major marrow metabolite of the leukemogen benzene, has been proven to evoke benzene-related hematological disorders and myelotoxicity in vitro and in vivo. The goal of the present study was to explore the role of FOXP3 in HQ-induced malignant progression of U937 human leukemia cells. U937 cells were treated with 5 μM HQ for 24 h, and the cells were re-suspended in serum-containing medium without HQ for 2 days. The same procedure was repeated three times, and the resulting U937/HQ cells were maintained in cultured medium containing 5 μM HQ. Proliferation and colony formation of U937/HQ cells were notably higher than those of U937 cells. Ten-eleven translocation methylcytosine dioxygenase-mediated demethylation of the Treg-specific demethylated region in FOXP3 gene resulted in higher FOXP3 expression in U937/HQ cells than in U937 cells. FOXP3-induced miR-183 expression reduced β-TrCP mRNA stability and suppressed β-TrCP-mediated Sp1 degradation, leading to up-regulation of Sp1 expression in U937/HQ cells. Sp1 up-regulation further increased ADAM17 and Lyn expression, and ADAM17 up-regulation stimulated Lyn activation in U937/HQ cells. Moreover, U937/HQ cells showed higher Lyn-mediated Akt activation and cytoplasmic p21 expression than U937 cells did. Abolishment of Akt activation decreased cytoplasmic p21 expression in U937/HQ cells. Suppression of FOXP3, ADAM17, and Lyn expression, as well as Akt inactivation, repressed proliferation and clonogenicity of U937/HQ cells. Together with the finding that cytoplasmic p21 shows anti-apoptotic and oncogenic activities in cancer cells, the present data suggest a role of FOXP3/ADAM17/Lyn/Akt/p21 signaling axis in HQ-induced hematological disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

AML:

Acute myeloid leukemia

ChIP:

Chromatin immunoprecipitation

CFSE:

Carboxyfluorescein succinimidyl ester

FOXP3:

Forkhead box transcription factor 3

HQ:

Hydroquinone

MDS:

Myelodysplastic syndrome

MSPCR:

Methylation-specific PCR

MTT:

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide

TET:

Ten-eleven translocation

Tregs:

Regulatory T cells

TSDR:

Treg-specific demethylated region

References

  • Abbas T, Dutta A (2009) p21 in cancer: intricate networks and multiple activities. Nat Rev Cancer 9:400–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arribas J, Esselens C (2009) ADAM17 as a therapeutic target in multiple diseases. Curr Pharm Des 15:2319–2335

    Article  CAS  PubMed  Google Scholar 

  • Baylin SB (2005) DNA methylation and gene silencing in cancer. Nat Clin Pract Oncol 2:S4–S11

    Article  CAS  PubMed  Google Scholar 

  • Bollati V, Baccarelli A, Hou L, Bonzini M, Fustinoni S, Cavallo D, Byun HM, Jiang J, Marinelli B, Pesatori AC, Bertazzi PA, Yang AS (2007) Changes in DNA methylation patterns in subjects exposed to low-dose benzene. Cancer Res 67:876–880

    Article  CAS  PubMed  Google Scholar 

  • Chen YJ, Chang LS (2014) Simvastatin induces NFκB/p65 down-regulation and JNK1/c-Jun/ATF-2 activation, leading to matrix metalloproteinase-9 (MMP-9) but not MMP-2 down-regulation in human leukemia cells. Biochem Pharmacol 92:530–543

    Article  CAS  PubMed  Google Scholar 

  • Choi JM, Cho YC, Cho WJ, Kim TS, Kang BY (2008) Hydroquinone, a major component in cigarette smoke, reduces IFN-γ production in antigen-primed lymphocytes. Arch Pharm Res 31:337–341

    Article  CAS  PubMed  Google Scholar 

  • Coulter JB, O’Driscoll CM, Bressler JP (2013) Hydroquinone increases 5-hydroxymethylcytosine formation through ten eleven translocation 1 (TET1) 5-methylcytosine dioxygenase. J Biol Chem 288:28792–28800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dimitrakopoulos FI, Papadaki H, Antonacopoulou AG, Kottorou A, Gotsis AD, Scopa C, Kalofonos HP, Mouzaki A (2011) Association of FOXP3 expression with non-small cell lung cancer. Anticancer Res 31:1677–1683

    CAS  PubMed  Google Scholar 

  • Dos Santos C, Demur C, Bardet V, Prade-Houdellier N, Payrastre B, Récher C (2008) A critical role for Lyn in acute myeloid leukemia. Blood 111:2269–2279

    Article  PubMed  Google Scholar 

  • Douglass S, Meeson AP, Overbeck-Zubrzycka D, Brain JG, Bennett MR, Lamb CA, Lennard TW, Browell D, Ali S, Kirby JA (2014) Breast cancer metastasis: demonstration that FOXP3 regulates CXCR4 expression and the response to CXCL12. J Pathol 234:74–85

    Article  CAS  PubMed  Google Scholar 

  • Ebert LM, Tan BS, Browning J, Svobodova S, Russell SE, Kirkpatrick N, Gedye C, Moss D, Ng SP, MacGregor D, Davis ID, Cebon J, Chen W (2008) The regulatory T cell-associated transcription factor FoxP3 is expressed by tumor cells. Cancer Res 68:3001–3009

    Article  CAS  PubMed  Google Scholar 

  • Ehrlich M (2009) DNA hypomethylation in cancer cells. Epigenomics 1:239–259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frattini V, Pisati F, Speranza MC, Poliani PL, Frigé G, Cantini G, Kapetis D, Cominelli M, Rossi A, Finocchiaro G, Pellegatta S (2012) FOXP3, a novel glioblastoma oncosuppressor, affects proliferation and migration. Oncotarget 3:1146–1157

    Article  PubMed  PubMed Central  Google Scholar 

  • Fukuda R, Hayashi A, Utsunomiya A, Nukada Y, Fukui R, Itoh K, Tezuka K, Ohashi K, Mizuno K, Sakamoto M, Hamanoue M, Tsuji T (2005) Alteration of phosphatidylinositol 3-kinase cascade in the multilobulated nuclear formation of adult T cell leukemia/lymphoma (ATLL). Proc Natl Acad Sci USA 102:15213–15218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grandage VL, Gale RE, Linch DC, Khwaja A (2005) PI3-kinase/Akt is constitutively active in primary acute myeloid leukaemia cells and regulates survival and chemoresistance via NF-κB, MAPkinase and p53 pathways. Leukemia 19:586–594

    CAS  PubMed  Google Scholar 

  • Hájková H, Marková J, Haškovec C, Sárová I, Fuchs O, Kostečka A, Cetkovský P, Michalová K, Schwarz J (2012) Decreased DNA methylation in acute myeloid leukemia patients with DNMT3A mutations and prognostic implications of DNA methylation. Leuk Res 36:1128–1133

    Article  PubMed  Google Scholar 

  • Hayes RB, Yin S, Rothman N, Dosemici M, Li G, Travis LT, Smith MT, Linet MS (2000) Benzene and lymphohematopoietic malignancies in China. J Toxicol Environ Health A 61:419–432

    Article  CAS  PubMed  Google Scholar 

  • Hayes RB, Songnian Y, Dosemeci M, Linet M (2001) Benzene and lymphohematopoietic malignancies in humans. Am J Ind Med 40:117–126

    Article  CAS  PubMed  Google Scholar 

  • Hinz S, Pagerols-Raluy L, Oberg HH, Ammerpohl O, Grüssel S, Sipos B, Grützmann R, Pilarsky C, Ungefroren H, Saeger HD, Klöppel G, Kabelitz D, Kalthoff H (2007) Foxp3 expression in pancreatic carcinoma cells as a novel mechanism of immune evasion in cancer. Cancer Res 67:8344–8350

    Article  CAS  PubMed  Google Scholar 

  • Hori S, Nomura T, Sakaguchi S (2003) Control of regulatory T cell development by the transcription factor FOXP3. Science 299:1057–1061

    Article  CAS  PubMed  Google Scholar 

  • Hu J, Ma H, Zhang W, Yu Z, Sheng G, Fu J (2014) Effects of benzene and its metabolites on global DNA methylation in human normal hepatic L02 cells. Environ Toxicol 29:108–116

    Article  CAS  PubMed  Google Scholar 

  • Huehn J, Polansky JK, Hamann A (2009) Epigenetic control of FOXP3 expression: the key to a stable regulatory T-cell lineage? Nat Rev Immunol 9:83–89

    Article  CAS  PubMed  Google Scholar 

  • Issa JP (2013) The myelodysplastic syndrome as a prototypical epigenetic disease. Blood 121:3811–3817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ji Z, Zhang L, Peng V, Ren X, McHale CM, Smith MT (2010) A comparison of the cytogenetic alterations and global DNA hypomethylation induced by the benzene metabolite, hydroquinone, with those induced by melphalan and etoposide. Leukemia 24:986–991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karanikas V, Speletas M, Zamanakou M, Kalala F, Loules G, Kerenidi T, Barda AK, Gourgoulianis KI, Germenis AE (2008) Foxp3 expression in human cancer cells. J Transl Med 6:19

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim M, Grimmig T, Grimm M, Lazariotou M, Meier E, Rosenwald A, Tsaur I, Blaheta R, Heemann U, Germer CT, Waaga-Gasser AM, Gasser M (2013) Expression of Foxp3 in colorectal cancer but not in Treg cells correlates with disease progression in patients with colorectal cancer. PLoS ONE 8:e53630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lal G, Bromberg JS (2009) Epigenetic mechanisms of regulation of Foxp3 expression. Blood 114:3727–3735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JY, Lee YG, Lee J, Yang KJ, Kim AR, Kim JY, Won MH, Park J, Yoo BC, Kim S, Cho WJ, Cho JY (2010) Akt Cys-310-targeted inhibition by hydroxylated benzene derivatives is tightly linked to their immunosuppressive effects. J Biol Chem 285:9932–9948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu WH, Chang LS (2010) Suppression of ADAM17-mediated Lyn/Akt pathways induces apoptosis of human leukemia U937 cells: Bungarus multicinctus protease inhibitor-like protein-1 uncovers the cytotoxic mechanism. J Biol Chem 285:30506–30515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu WH, Chang LS (2012) Suppression of Akt/Foxp3-mediated miR-183 expression blocks Sp1-mediated ADAM17 expression and TNFα-mediated NFκB activation in piceatannol-treated human leukemia U937 cells. Biochem Pharmacol 84:670–680

    Article  CAS  PubMed  Google Scholar 

  • Liu R, Wang L, Chen G, Katoh H, Chen C, Liu Y, Zheng P (2009) FOXP3 up-regulates p21 expression by site-specific inhibition of histone deacetylase 2/histone deacetylase 4 association to the locus. Cancer Res 69:2252–2259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu WH, Chou WM, Chang LS (2013) p38 MAPK/PP2Acα/TTP pathway on the connection of TNF-α and caspases activation on hydroquinone-induced apoptosis. Carcinogenesis 34:818–827

    Article  PubMed  Google Scholar 

  • Liu R, Liu C, Chen D, Yang WH, Liu X, Liu CG, Dugas CM, Tang F, Zheng P, Liu Y, Wang L (2015a) FOXP3 controls an miR-146/NF-κB negative feedback loop that inhibits apoptosis in breast cancer cells. Cancer Res 75:1703–1713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu R, Yi B, Wei S, Yang WH, Hart KM, Chauhan P, Zhang W, Mao X, Liu X, Liu CG, Wang L (2015b) FOXP3-miR-146-NF-κB axis and therapy for precancerous lesions in prostate. Cancer Res 75:1714–1724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo X, Tan H, Zhou Y, Xiao T, Wang C, Li Y (2013) Notch1 signaling is involved in regulating Foxp3 expression in T-ALL. Cancer Cell Int 13:34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marabelle A, Kohrt H, Sagiv-Barfi I, Ajami B, Axtell RC, Zhou G, Rajapaksa R, Green MR, Torchia J, Brody J, Luong R, Rosenblum MD, Steinman L, Levitsky HI, Tse V, Levy R (2013) Depleting tumor-specific Tregs at a single site eradicates disseminated tumors. J Clin Invest 123:2447–2463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merlo A, Casalini P, Carcangiu ML, Malventano C, Triulzi T, Mènard S, Tagliabue E, Balsari A (2009) FOXP3 expression and overall survival in breast cancer. J Clin Oncol 27:1746–1752

    Article  CAS  PubMed  Google Scholar 

  • Peloponese JM Jr, Jeang KT (2006) Role for Akt/protein kinase B and activator protein-1 in cellular proliferation induced by the human T-cell leukemia virus type 1 tax oncoprotein. J Biol Chem 281:8927–8938

    Article  CAS  PubMed  Google Scholar 

  • Piccolo MT, Crispi S (2012) The dual role played by p21 may influence the apoptotic or anti-apoptotic fate in cancer. J Cancer Res Updates 1:189–202

    Google Scholar 

  • Ross D (2000) The role of metabolism and specific metabolites in benzene induced toxicity: evidence and issues. J Toxicol Environ Health A 61:357–372

    Article  CAS  PubMed  Google Scholar 

  • Saied MH, Marzec J, Khalid S, Smith P, Down TA, Rakyan VK, Molloy G, Raghavan M, Debernardi S, Young BD (2012) Genome wide analysis of acute myeloid leukemia reveal leukemia specific methylome and subtype specific hypomethylation of repeats. PLoS ONE 7:e33213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schoofs T, Berdel WE, Müller-Tidow C (2014) Origins of aberrant DNA methylation in acute myeloid leukemia. Leukemia 28:1–14

    Article  CAS  PubMed  Google Scholar 

  • Seals DF, Courtneidge SA (2003) The ADAMs family of metalloproteinases: multidomain proteins with multiple functions. Genes Dev 17:7–30

    Article  CAS  PubMed  Google Scholar 

  • Shimazu Y, Shimazu Y, Hishizawa M, Hamaguchi M, Nagai Y, Sugino N, Fujii S, Kawahara M, Kadowaki N, Nishikawa H, Sakaguchi S, Takaori-Kondo A (2016) Hypomethylation of the Treg-specific demethylated region in FOXP3 is a hallmark of the regulatory T-cell subtype in adult T-cell leukemia. Cancer Immunol Res 4:136–145

    Article  CAS  PubMed  Google Scholar 

  • Stautz D, Sanjay A, Hansen MT, Albrechtsen R, Wewer UM, Kveiborg M (2010) ADAM12 localizes with c-Src to actin-rich structures at the cell periphery and regulates Src kinase activity. Exp Cell Res 316:55–67

    Article  CAS  PubMed  Google Scholar 

  • Sun C, Wu MH, Guo M, Day ML, Lee ES, Yuan SY (2010) ADAM15 regulates endothelial permeability and neutrophil migration via Src/ERK1/2 signalling. Cardiovasc Res 87:348–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan B, Anaka M, Deb S, Freyer C, Ebert LM, Chueh AC, Al-Obaidi S, Behren A, Jayachandran A, Cebon J, Chen W, Mariadason JM (2014) FOXP3 over-expression inhibits melanoma tumorigenesis via effects on proliferation and apoptosis. Oncotarget 5:264–276

    Article  PubMed  Google Scholar 

  • Toker A, Engelbert D, Garg G, Polansky JK, Floess S, Miyao T, Baron U, Düber S, Geffers R, Giehr P, Schallenberg S, Kretschmer K, Olek S, Walter J, Weiss S, Hori S, Hamann A, Huehn J (2013) Active demethylation of the Foxp3 locus leads to the generation of stable regulatory T cells within the thymus. J Immunol 190:3180–3188

    Article  CAS  PubMed  Google Scholar 

  • von Boehmer H, Daniel C (2013) Therapeutic opportunities for manipulating Treg cells in autoimmunity and cancer. Nat Rev Drug Discov 12:51–63

    Article  Google Scholar 

  • Wang L, Man N, Sun XJ, Tan Y, Cao MG, Liu F, Hatlen M, Xu H, Huang G, Mattlin M, Mehta A, Rampersaud E, Benezra R, Nimer SD (2015) Regulation of AKT signaling by Id1 controls t(8;21) leukemia initiation and progression. Blood 126:640–650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang R, Qu C, Zhou Y, Konkel JE, Shi S, Liu Y, Chen C, Liu S, Liu D, Chen Y, Zandi E, Chen W, Zhou Y, Shi S (2015) Hydrogen sulfide promotes Tet1- and Tet2-mediated Foxp3 demethylation to drive regulatory T cell differentiation and maintain immune homeostasis. Immunity 43:251–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang HY, Sun H (2010) Up-regulation of Foxp3 inhibits cell proliferation, migration and invasion in epithelial ovarian cancer. Cancer Lett 287:91–97

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Xu Y, Hao Q, Wang S, Li H, Li J, Gao Y, Li M, Li W, Xue X, Wu S, Zhang Y, Zhang W (2015) FOXP3 suppresses breast cancer metastasis through downregulation of CD44. Int J Cancer 137:1279–1290

    Article  CAS  PubMed  Google Scholar 

  • Zhu QS, Xia L, Mills GB, Lowell CA, Touw IP, Corey SJ (2005) G-CSF induced reactive oxygen species involves Lyn-PI3-kinase-Akt and contributes to myeloid cell growth. Blood 107:1847–1856

    Article  PubMed  Google Scholar 

  • Zuo T, Wang L, Morrison C, Chang X, Zhang H, Li W, Liu Y, Wang Y, Liu X, Chan MW, Liu JQ, Love R, Liu CG, Godfrey V, Shen R, Huang TH, Yang T, Park BK, Wang CY, Zheng P, Liu Y (2007a) FOXP3 is an X-linked breast cancer suppressor gene and an important repressor of the HER-2/ErbB2 oncogene. Cell 129:1275–1286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zuo T, Liu R, Zhang H, Chang X, Liu Y, Wang L, Zheng P, Liu Y (2007b) FOXP3 is a novel transcriptional repressor for the breast cancer oncogene SKP2. J Clin Invest 117:3765–3773

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by grant MOST 103-2320-B110-002-MY2 from the Ministry of Science and Technology, Taiwan, ROC (to L.S. Chang).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long-Sen Chang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, YJ., Liu, WH. & Chang, LS. Hydroquinone-induced FOXP3-ADAM17-Lyn-Akt-p21 signaling axis promotes malignant progression of human leukemia U937 cells. Arch Toxicol 91, 983–997 (2017). https://doi.org/10.1007/s00204-016-1753-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-016-1753-4

Keywords

Navigation