Skip to main content

Advertisement

Log in

Role of AMP-activated protein kinase α1 in 17α-ethinylestradiol-induced cholestasis in rats

  • Organ Toxicity and Mechanisms
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Estrogen-induced cholestasis occurs in many women who are susceptible due to pregnancy or hormone replacement therapy for postmenopausal syndrome. 17α-Ethinylestradiol (EE), as a synthetic estrogen, has been widely used to study the underlying mechanisms of estrogen-induced cholestasis. Recent studies have also reported that liver kinase B1 (LKB1)-mediated activation of AMP-activated protein kinase (AMPK) plays a critical role in the regulation of canalicular network formation. However, the role of AMPK in EE-induced cholestasis remains to be determined. In this study, the effects of EE (1–100 µM) on AMPK activation and the expression of farnesoid X receptor (FXR) and hepatic bile acid transporters were examined in in vitro using 3D-cultured rat primary hepatocytes and in in vivo using rat cholestasis models. We also used specific chemical agonist and antagonist of AMPK, AMPK subunit-specific antibodies and lentiviral shRNAs for AMPKα1 and AMPKα2 to delineate the role of AMPK in EE-induced cholestasis and potential cellular mechanisms. We found that EE-induced phosphorylation of AMPKα1 via extracellular signal-regulated kinases-LKB1-mediated signaling pathways and subsequent nuclear translocation accounted for the down-regulation of FXR and bile acid transporters and disruption of bile acid homeostasis. Inhibition of AMPK activation using an AMPK antagonist Compound C (2 µM) or down-regulation of AMPKα1 using gene-specific shRNA attenuated EE-induced cholestasis both in in vitro and in in vivo. In conclusion, these results revealed that activation of cAMP-ERK-LKB1-AMPKα1 signaling pathway plays a critical role in EE-mediated dysregulation of the expression of FXR and bile acid transporters. AMPKα1 may represent an important therapeutic target for estrogen-induced cholestasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ICP:

Intrahepatic cholestasis of pregnancy

EE:

17α-Ethinylestradiol

Bsep:

Bile salt export pump

Mrp2:

Multidrug resistance-associated protein 2

Ntcp:

Na+-dependent taurocholate cotransporter

Oatp2:

Organic anion transporters 2

FXR:

Farnesoid X receptor

AMPK:

AMP-activated protein kinase

LKB1:

Liver kinase B1

ERK1/2:

Extracellular signal-regulated kinases

ER:

Estrogen receptor

TCA:

Taurocholate

GPR30:

G protein-coupled receptor 30

CC:

Compound C

GAPDH:

Glyceraldehyde 3-phosphate dehydrogenase

References

  • Abu-Hayyeh S, Papacleovoulou G, Lovgren-Sandblom A et al (2013) Intrahepatic cholestasis of pregnancy levels of sulfated progesterone metabolites inhibit farnesoid X receptor resulting in a cholestatic phenotype. Hepatology 57(2):716–726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barth A, Klinger G, Rost M (2003) Influence of ethinyloestradiol propanolsulphonate on serum bile acids in healthy volunteers. Exp Toxicol Pathol 54(5):381–386

    Article  CAS  PubMed  Google Scholar 

  • Chang HR, Nam S, Kook MC et al (2016) HNF4alpha is a therapeutic target that links AMPK to WNT signalling in early-stage gastric cancer. Gut 65(1):19–32

    Article  CAS  PubMed  Google Scholar 

  • Crocenzi FA, Sanchez Pozzi EJ, Pellegrino JM et al (2001) Beneficial effects of silymarin on estrogen-induced cholestasis in the rat: a study in vivo and in isolated hepatocyte couplets. Hepatology 34(2):329–339

    Article  CAS  PubMed  Google Scholar 

  • Eeckhoute J, Formstecher P, Laine B (2004) Hepatocyte nuclear factor 4alpha enhances the hepatocyte nuclear factor 1alpha-mediated activation of transcription. Nucleic Acids Res 32(8):2586–2593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu D, Wakabayashi Y, Lippincott-Schwartz J, Arias IM (2011) Bile acid stimulates hepatocyte polarization through a cAMP-Epac-MEK-LKB1-AMPK pathway. Proc Natl Acad Sci USA 108(4):1403–1408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geier A, Dietrich CG, Gerloff T et al (2003) Regulation of basolateral organic anion transporters in ethinylestradiol-induced cholestasis in the rat. Biochim Biophys Acta 1609(1):87–94

    Article  CAS  PubMed  Google Scholar 

  • Geier A, Martin IV, Dietrich CG et al (2008) Hepatocyte nuclear factor-4alpha is a central transactivator of the mouse Ntcp gene. Am J Physiol Gastrointest Liv Physiol 295(2):226–233

    Article  Google Scholar 

  • Gonzalez-Sanchez E, Firrincieli D, Housset C, Chignard N (2015) Nuclear receptors in acute and chronic cholestasis. Dig Dis 33(3):357–366

    Article  PubMed  Google Scholar 

  • Gowans GJ, Hardie DG (2014) AMPK: a cellular energy sensor primarily regulated by AMP. Biochem Soc Trans 42(1):71–75

    Article  CAS  PubMed  Google Scholar 

  • Hardie DG, Ashford ML (2014) AMPK: regulating energy balance at the cellular and whole body levels. Physiology 29(2):99–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henriquez-Hernandez LA, Flores-Morales A, Santana-Farre R et al (2007) Role of pituitary hormones on 17alpha-ethinylestradiol-induced cholestasis in rat. J Pharmacol Exp Ther 320(2):695–705

    Article  CAS  PubMed  Google Scholar 

  • Homolya L, Fu D, Sengupta P et al (2014) LKB1/AMPK and PKA control ABCB11 trafficking and polarization in hepatocytes. PLoS ONE 9(3):e91921

    Article  PubMed  PubMed Central  Google Scholar 

  • Ju TC, Chen HM, Lin JT et al (2011) Nuclear translocation of AMPK-alpha1 potentiates striatal neurodegeneration in Huntington’s disease. J Cell Biol 194(2):209–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung D, Kullak-Ublick GA (2003) Hepatocyte nuclear factor 1 alpha: a key mediator of the effect of bile acids on gene expression. Hepatology 37(3):622–631

    Article  CAS  PubMed  Google Scholar 

  • Jung D, Elferink MG, Stellaard F, Groothuis GM (2007) Analysis of bile acid-induced regulation of FXR target genes in human liver slices. Liv Int 27(1):137–144

    Article  CAS  Google Scholar 

  • Lee CG, Kim YW, Kim EH et al (2012) Farnesoid X receptor protects hepatocytes from injury by repressing miR-199a-3p, which increases levels of LKB1. Gastroenterology 142(5):1206–1217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li T, Chiang JY (2013) Nuclear receptors in bile acid metabolism. Drug Metab Rev 45(1):145–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lien F, Berthier A, Bouchaert E et al (2014) Metformin interferes with bile acid homeostasis through AMPK-FXR crosstalk. J Clin Investig 124(3):1037–1051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, LeCluyse EL, Brouwer KR et al (1999) Biliary excretion in primary rat hepatocytes cultured in a collagen-sandwich configuration. Am J Physiol 277(1 Pt 1):12–21

    Google Scholar 

  • Liu Y, Binz J, Numerick MJ et al (2003) Hepatoprotection by the farnesoid X receptor agonist GW4064 in rat models of intra- and extrahepatic cholestasis. J Clin Investig 112(11):1678–1687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu N, Meng Z, Lou G et al (2012) Hepatocarcinogenesis in FXR −/− mice mimics human HCC progression that operates through HNF1alpha regulation of FXR expression. Mol Endocrinol 26(5):775–785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meng Q, Chen X, Wang C et al (2015) Protective effects of alisol B 23-Acetate via farnesoid X receptor-mediated regulation of transporters and enzymes in estrogen-induced cholestatic liver injury in mice. Pharm Res 32(11):3688–3698

    Article  CAS  PubMed  Google Scholar 

  • Noh K, Kim YM, Kim YW, Kim SG (2011) Farnesoid X receptor activation by chenodeoxycholic acid induces detoxifying enzymes through AMP-activated protein kinase and extracellular signal-regulated kinase 1/2-mediated phosphorylation of CCAAT/enhancer binding protein beta. Drug Metab Dispos 39(8):1451–1459

    Article  CAS  PubMed  Google Scholar 

  • Novikova DS, Garabadzhiu AV, Melino G, Barlev NA, Tribulovich VG (2015) AMP-activated protein kinase: structure, function, and role in pathological processes. Biochem Biokhimiia 80(2):127–144

    Article  CAS  Google Scholar 

  • Pang Y, Dong J, Thomas P (2008) Estrogen signaling characteristics of Atlantic croaker G protein-coupled receptor 30 (GPR30) and evidence it is involved in maintenance of oocyte meiotic arrest. Endocrinology 149(7):3410–3426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahner C, Stieger B, Landmann L (1996) Structure-function correlation of tight junctional impairment after intrahepatic and extrahepatic cholestasis in rat liver. Gastroenterology 110(5):1564–1578

    Article  CAS  PubMed  Google Scholar 

  • Ruiz ML, Rigalli JP, Arias A et al (2013) Induction of hepatic multidrug resistance-associated protein 3 by ethynylestradiol is independent of cholestasis and mediated by estrogen receptor. Drug Metab Dispos 41(2):275–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Segovia N, Oberhauser E (1981) Sulfobromophthalein clearance tests before and after ethinyl estradiol administration, in women and men with familial history of intrahepatic cholestasis of pregnancy. Gastroenterology 81:226–231

    PubMed  Google Scholar 

  • Song X, Vasilenko A, Chen Y et al (2014) Transcriptional dynamics of bile salt export pump during pregnancy: mechanisms and implications in intrahepatic cholestasis of pregnancy. Hepatology 60(6):1993–2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stapleton D, Mitchelhill KI, Gao G et al (1996) Mammalian AMP-activated protein kinase subfamily. J Biol Chem 271(2):611–614

    Article  CAS  PubMed  Google Scholar 

  • Stepanov V, Stankov K, Mikov M (2013) The bile acid membrane receptor TGR5: a novel pharmacological target in metabolic, inflammatory and neoplastic disorders. J Recept Signal Transduct Res 33(4):213–223

    Article  CAS  PubMed  Google Scholar 

  • Studer E, Zhou X, Zhao R et al (2012) Conjugated bile acids activate the sphingosine-1-phosphate receptor 2 in primary rodent hepatocytes. Hepatology 55(1):267–276

    Article  CAS  PubMed  Google Scholar 

  • Trauner M, Arrese M, Soroka CJ et al (1997) The rat canalicular conjugate export pump (Mrp2) is down-regulated in intrahepatic and obstructive cholestasis. Gastroenterology 113(1):255–264

    Article  CAS  PubMed  Google Scholar 

  • Van Mil SW, Milona A, Dixon PH et al (2007) Functional variants of the central bile acid sensor FXR identified in intrahepatic cholestasis of pregnancy. Gastroenterology 133(2):507–516

    Article  PubMed  Google Scholar 

  • Williamson C, Geenes V (2014) Intrahepatic cholestasis of pregnancy. Obstet Gynecol 124(1):120–133

    Article  PubMed  Google Scholar 

  • Wu X, Sun L, Zha W et al (2010) HIV protease inhibitors induce endoplasmic reticulum stress and disrupt barrier integrity in intestinal epithelial cells. Gastroenterology 138(1):197–209

    Article  CAS  PubMed  Google Scholar 

  • Xu H, Qin S, Carrasco GA et al (2009) Extra-nuclear estrogen receptor GPR30 regulates serotonin function in rat hypothalamus. Neuroscience 158(4):1599–1607

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto Y, Moore R, Hess HA et al (2006) Estrogen receptor alpha mediates 17alpha-ethynylestradiol causing hepatotoxicity. J Biol Chem 281(24):16625–16631

    Article  CAS  PubMed  Google Scholar 

  • Yang S, Wang J (2015) Estrogen activates AMP-activated protein kinase in human endothelial cells via ERbeta/Ca/Calmodulin-dependent protein kinase kinase beta pathway. Cell Biochem Biophys 72(3):701–707

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Li J, Young LH, Caplan MJ (2006) AMP-activated protein kinase regulates the assembly of epithelial tight junctions. Proc Natl Acad Sci USA 103(46):17272–17277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zucchetti AE, Barosso IR, Boaglio AC et al (2014) G-protein-coupled receptor 30/adenylyl cyclase/protein kinase a pathway is involved in estradiol 17ss-D-glucuronide-induced cholestasis. Hepatology 59(3):1016–1029

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China Grants (81320108029 to LZ; 81573514 to ZJ; 81070245, 81270489 to HZ); Specific Fund for Public Interest Research of Traditional Chinese Medicine, Ministry of Finance (201507004-002 to LZ), Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD); National Institutes of Heath Grant R01 DK-057543-11 (to PBH and HZ), VA Merit Awards (to HZ; I01BX001390); VCU Massey Cancer Pilot grant (A35362 to HZ).

Authors contribution

LX, PBH, ZJ, LZ and HZ conceived the original ideas, designed the study, analyzed the data and wrote the manuscript; LX, RL, LL, XC, LS, TW carried out the experiments and data analysis. ZJ and LZ contributed equally.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huiping Zhou, Zhenzhou Jiang or Luyong Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 839 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Liu, R., Luo, L. et al. Role of AMP-activated protein kinase α1 in 17α-ethinylestradiol-induced cholestasis in rats. Arch Toxicol 91, 481–494 (2017). https://doi.org/10.1007/s00204-016-1697-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-016-1697-8

Keywords

Navigation