Skip to main content

Advertisement

Log in

Toluene diisocyanate and methylene diphenyl diisocyanate: asthmatic response and cross-reactivity in a mouse model

  • Immunotoxicology
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Both 2,4-toluene diisocyanate (TDI) and 4,4-methylene diphenyl diisocyanate (MDI) can cause occupational asthma. In this study, we optimized our mouse model of chemical-induced asthma in the C57Bl/6 mice strain using the model agent TDI. Furthermore, we validated MDI in this mouse model and investigated whether cross-reactivity between TDI and MDI is present. On days 1 and 8, C57Bl/6 mice were dermally treated (20 µl/ear) with 3 % MDI, 2 % TDI or the vehicle acetone olive oil (AOO) (3:2). On day 15, they received a single oropharyngeal challenge with 0.04 % MDI, 0.01 % TDI or the vehicle AOO (4:1). One day later, airway hyperreactivity (AHR) and pulmonary inflammation in the bronchoalveolar lavage (BAL) were assessed. Furthermore, total serum IgE levels, lymphocyte subpopulations in auricular lymph nodes and cytokine levels in supernatants of lymphocytes were measured. Both dermal sensitization with TDI or MDI resulted in increased total serum IgE levels along with T and B cell proliferation in the auricular lymph nodes. The auricular lymphocytes showed an increased release of both Th2 and Th1 cytokines. Mice sensitized and challenged with either TDI or MDI showed AHR, along with a predominant neutrophil lung inflammation. Mice sensitized with MDI and challenged with TDI or the other way around showed no AHR, nor BAL inflammation. Both TDI and MDI are able to induce an asthma-like response in this mouse model. However, cross-reactivity between both diisocyanates remained absent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aul DJ, Bhaumik A, Kennedy AL, Brown WE, Lesage J, Malo JL (1999) Specific IgG response to monomeric and polymeric diphenylmethane diisocyanate conjugates in subjects with respiratory reactions to isocyanates. J Allergy Clin Immunol 103:749–755

    Article  CAS  PubMed  Google Scholar 

  • Baur X (1983) Immunologic cross-reactivity between different albumin-bound isocyanates. J Allergy Clin Immunol 71:197–205

    Article  CAS  PubMed  Google Scholar 

  • Bello D, Herrick CA, Smith TJ, Woskie SR, Streicher RP, Cullen MR, Liu Y, Redlich CA (2007) Skin exposure to isocyanates: reasons for concern. Environ Health Perspect 115:328–335

    Article  CAS  PubMed  Google Scholar 

  • Chan-Yeung M, Malo JL, Tarlo SM, Bernstein L, Gautrin D, Mapp C, Newman-Taylor A, Swanson MC, Perrault G, Jaques L, Blanc PD, Vandenplas O, Cartier A, Becklake MR (2003) Proceedings of the first Jack Pepys Occupational Asthma Symposium. Am J Respir Crit Care Med 167:450–471

    Article  PubMed  Google Scholar 

  • Choi JH, Jang YS, Oh JW, Kim CH, Hyun IG (2014) Bee pollen-induced anaphylaxis: a case report and literature review. Allergy Asthma Immunol Res 7:513–517

    Article  PubMed  PubMed Central  Google Scholar 

  • De Vooght V, Vanoirbeek JA, Haenen S, Verbeken E, Nemery B, Hoet PH (2009) Oropharyngeal aspiration: an alternative route for challenging in a mouse model of chemical-induced asthma. Toxicology 259:84–89

    Article  PubMed  Google Scholar 

  • De Vooght V, Vanoirbeek JA, Luyts K, Haenen S, Nemery B, Hoet PH (2010) Choice of mouse strain influences the outcome in a mouse model of chemical-induced asthma. PLoS ONE 5:e12581

    Article  PubMed  PubMed Central  Google Scholar 

  • Gabriel MF, Gonzalez-Delgado P, Postigo I, Fernandez J, Soriano V, Cueva B, Martinez J (2015) From respiratory sensitization to food allergy: anaphylactic reaction after ingestion of mushrooms (Agaricus bisporus). Med Mycol Case Rep 8:14–16

    Article  PubMed  PubMed Central  Google Scholar 

  • Grammer LC, Harris KE, Malo JL, Cartier A, Patterson R (1990) The use of an immunoassay index for antibodies against isocyanate human protein conjugates and application to human isocyanate disease. J Allergy Clin Immunol 86:94–98

    Article  CAS  PubMed  Google Scholar 

  • Harries MG, Burge PS, Samson M, Taylor AJ, Pepys J (1979) Isocyanate asthma: respiratory symptoms due to 1,5-naphthylene di-isocyanate. Thorax 34:762–766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hettick JM, Siegel PD (2011) Comparative analysis of aromatic diisocyanate conjugation to human albumin utilizing multiplexed tandem mass spectrometry. Int J Mass Spectrom 309:168–175

    Article  Google Scholar 

  • Hettick JM, Siegel PD, Green BJ, Liu J, Wisnewski AV (2012) Vapor conjugation of toluene diisocyanate to specific lysines of human albumin. Anal Biochem 421:706–711

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann HD, Schupp T (2009) Evaluation of consumer risk resulting from exposure against diphenylmethane-4,4′-diisocyanate (MDI) from polyurethane foam. EXCLI 8:58–65

    Google Scholar 

  • Hur GY, Koh DH, Choi GS, Park HJ, Choi SJ, Ye YM, Kim KS, Park HS (2008) Clinical and immunologic findings of methylene diphenyl diisocyanate-induced occupational asthma in a car upholstery factory. Clin Exp Allergy 38:586–593

    Article  CAS  PubMed  Google Scholar 

  • Lemons AR, Siegel PD, Mhike M, Law BF, Hettick JM, Bledsoe TA, Nayak AP, Beezhold DH, Green BJ (2014) A murine monoclonal antibody with broad specificity for occupationally relevant diisocyanates. J Occup Environ Hyg 11:101–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lundov MD, Krongaard T, Menne TL, Johansen JD (2011) Methylisothiazolinone contact allergy: a review. Br J Dermatol 165:1178–1182

    Article  CAS  PubMed  Google Scholar 

  • Lushniak BD, Reh CM, Bernstein DI, Gallagher JS (1998) Indirect assessment of 4,4′-diphenylmethane diisocyanate (MDI) exposure by evaluation of specific humoral immune responses to MDI conjugated to human serum albumin. Am J Ind Med 33:471–477

    Article  CAS  PubMed  Google Scholar 

  • Malo JL, Ouimet G, Cartier A, Levitz D, Zeiss CR (1983) Combined alveolitis and asthma due to hexamethylene diisocyanate (HDI), with demonstration of crossed respiratory and immunologic reactivities to diphenylmethane diisocyanate (MDI). J Allergy Clin Immunol 72:413–419

    Article  CAS  PubMed  Google Scholar 

  • Mapp CE, Dal VL, Boschetto P, Fabbri LM (1985) Combined asthma and alveolitis due to diphenylmethane diisocyanate (MDI) with demonstration of no crossed respiratory reactivity to toluene diisocyanate (TDI). Ann Allergy 54:424–429

    CAS  PubMed  Google Scholar 

  • Matheson JM, Johnson VJ, Vallyathan V, Luster MI (2005) Exposure and immunological determinants in a murine model for toluene diisocyanate (TDI) asthma. Toxicol Sci 84:88–98

    Article  CAS  PubMed  Google Scholar 

  • O’Brien IM, Harries MG, Burge PS, Pepys J (1979) Toluene di-isocyanate-induced asthma. I. Reactions to TDI, MDI, HDI and histamine. Clin Allergy 9:1–6

    Article  PubMed  Google Scholar 

  • Park H, Jung K, Kim H, Nahm D, Kang K (1999) Neutrophil activation following TDI bronchial challenges to the airway secretion from subjects with TDI-induced asthma. Clin Exp Allergy 29:1395–1401

    Article  CAS  PubMed  Google Scholar 

  • Pauluhn J (2005) Brown Norway rat asthma model of diphenylmethane 4,4′-diisocyanate. Inhal Toxicol 17:729–739

    Article  CAS  PubMed  Google Scholar 

  • Pauluhn J (2014) Development of a respiratory sensitization/elicitation protocol of toluene diisocyanate (TDI) in Brown Norway rats to derive an elicitation-based occupational exposure level. Toxicology 319:10–22

    Article  CAS  PubMed  Google Scholar 

  • Petsonk EL, Wang ML, Lewis DM, Siegel PD, Husberg BJ (2000) Asthma-like symptoms in wood product plant workers exposed to methylene diphenyl diisocyanate. Chest 118:1183–1193

    Article  CAS  PubMed  Google Scholar 

  • Redlich CA (2010) Skin exposure and asthma: is there a connection? Proc Am Thorac Soc 7:134–137

    Article  PubMed  PubMed Central  Google Scholar 

  • Ruwona TB, Johnson VJ, Schmechel D, Simoyi RH, Beezhold D, Siegel PD (2010) Monoclonal antibodies against toluene diisocyanate haptenated proteins from vapor-exposed mice. Hybridoma (Larchmt) 29:221–229

    Article  CAS  Google Scholar 

  • Scheerens H, Buckley TL, Muis TL, Garssen J, Dormans J, Nijkamp FP, Van Loveren H (1999) Long-term topical exposure to toluene diisocyanate in mice leads to antibody production and in vivo airway hyperresponsiveness three hours after intranasal challenge. Am J Respir Crit Care Med 159:1074–1080

    Article  CAS  PubMed  Google Scholar 

  • Selgrade M, Boykin EH, Haykal-Coates N, Woolhiser MR, Wiescinski C, Andrews DL, Farraj AK, Doerfler DL, Gavett SH (2006) Inconsistencies between cytokine profiles, antibody responses, and respiratory hyperresponsiveness following dermal exposure to isocyanates. Toxicol Sci 94:108–117

    Article  CAS  PubMed  Google Scholar 

  • Tanser AR, Bourke MP, Blandford AG (1973) Isocyanate asthma: respiratory symptoms caused by diphenyl-methane di-isocyanate. Thorax 28:596–600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tarkowski M, Vanoirbeek JAJ, Vanhooren HM, De Vooght V, Mercier C, Ceuppens JL, Nemery B, Hoet PMH (2007) Immunological determinants of ventilatory changes induced in mice by dermal sensitization and respiratory challenge with toluene diisocyanate. Am J Physiol Lung Cell Mol Physiol 292:L207–L214

    Article  CAS  PubMed  Google Scholar 

  • Tee RD, Cullinan P, Welch J, Burge PS, Newman-Taylor AJ (1998) Specific IgE to isocyanates: a useful diagnostic role in occupational asthma. J Allergy Clin Immunol 101:709–715

    Article  CAS  PubMed  Google Scholar 

  • van Kampen V, Sander I, Quirce S, Bruning T, Merget R, Raulf M (2015) IgE sensitization to lupine in bakers-cross-reactivity or co-sensitization to wheat flour? Int Arch Allergy Immunol 166:63–70

    Article  PubMed  Google Scholar 

  • Vanoirbeek JA, Tarkowski M, Ceuppens JL, Verbeken EK, Nemery B, Hoet PH (2004) Respiratory response to toluene diisocyanate depends on prior frequency and concentration of dermal sensitization in mice. Toxicol Sci 80:310–321

    Article  CAS  PubMed  Google Scholar 

  • Vanoirbeek JA, De Vooght V, Vanhooren HM, Nawrot TS, Nemery B, Hoet PH (2008) How long do the systemic and ventilatory responses to toluene diisocyanate persist in dermally sensitized mice? J Allergy Clin Immunol 121:456–463

    Article  CAS  PubMed  Google Scholar 

  • Vanoirbeek JA, De Vooght V, Synhaeve N, Nemery B, Hoet PH (2009) Is toluene diamine a sensitizer and is there cross-reactivity between toluene diamine and toluene diisocyanate? Toxicol Sci 109:256–264

    Article  CAS  PubMed  Google Scholar 

  • Wass U, Belin L (1989) Immunologic specificity of isocyanate-induced IgE antibodies in serum from 10 sensitized workers. J Allergy Clin Immunol 83:126–135

    Article  CAS  PubMed  Google Scholar 

  • Wisnewski AV, Jones M (2010) Pro/Con debate: is occupational asthma induced by isocyanates an immunoglobulin E-mediated disease? Clin Exp Allergy 40:1155–1162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wisnewski AV, Liu J (2013) Molecular determinants of humoral immune specificity for the occupational allergen, methylene diphenyl diisocyanate. Mol Immunol 54:233–237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wisnewski AV, Xu L, Robinson E, Liu J, Redlich CA, Herrick CA (2011) Immune sensitization to methylene diphenyl diisocyanate (MDI) resulting from skin exposure: albumin as a carrier protein connecting skin exposure to subsequent respiratory responses. J Occup Med Toxicol 6:6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wisnewski AV, Liu J, Redlich CA (2013a) Connecting glutathione with immune responses to occupational methylene diphenyl diisocyanate exposure. Chem Biol Interact 205:38–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wisnewski AV, Redlich CA, Mapp C, Bernstein D (2013b) Polyisocyanates and their prepolymers. In: Malo Jean-luc, Chan-yeung Moira, Bernstein David I (eds) Asthma in the workplace, 4th edn. CRC Press, New York, NY, pp 262–275

    Google Scholar 

  • Woods G (1990) Making polyurethanes. In: The ICI polyurethanes. 2nd edn. Wiley, New York, pp 7–26

Download references

Acknowledgments

This work was supported by a grant of the Interuniversity Attraction Poles Program-Belgian State-Belgian Science Policy [IUAP P7/30].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeroen A. J. Vanoirbeek.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Lore Pollaris and Fien Devos have contributed equally to this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pollaris, L., Devos, F., De Vooght, V. et al. Toluene diisocyanate and methylene diphenyl diisocyanate: asthmatic response and cross-reactivity in a mouse model. Arch Toxicol 90, 1709–1717 (2016). https://doi.org/10.1007/s00204-015-1606-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-015-1606-6

Keywords

Navigation