Skip to main content

Advertisement

Log in

Selective cancer-killing ability of metal-based nanoparticles: implications for cancer therapy

  • Review Article
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

There has been little focus on the promising ability of metal-based nanoparticles (NPs) to kill cancer cells while sparing normal cells. Many in vitro and in vivo reports suggest that certain metal-based NPs are able to induce apoptosis and autophagy in cancer cells at specific concentrations that are not significantly toxic to non-cancerous cells. Those NPs are thought to exploit the oxidative stress conditions that prevail in cancer cells, which are largely exhausted of antioxidant ability. This review considers the induction of reactive oxygen species (ROS) by metal-based NPs as a mechanism for the specific killing of cancer cells. The article concomitantly provides a comprehensive description of the important pathways and molecules leading to programmed cell death (PCD), which occurs mainly via apoptosis, autophagy, and necroptosis. The PCD pathways are followed as ROS-burdened cancer cells succumb to ROS-generating metal-based NPs. Exploration of nanotechnology interventions in anticancer therapy demands further research into the mechanism of intracellular induction of ROS by metal-based NPs. Furthermore, the induction of ROS by NPs should be strictly controlled if ROS-based therapy is to become a paradigm in cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ahamed M, Siddiqui MA, Akhtar MJ et al (2010) Genotoxic potential of copper oxide nanoparticles in human lung epithelial cells. Biochem Biophys Res Commun 396(2):578–583

    Article  PubMed  CAS  Google Scholar 

  • Ahamed M, Akhtar MJ, Raja M et al (2011a) ZnO nanorod-induced apoptosis in human alveolar adenocarcinoma cells via p53, survivin and bax/bcl-2 pathways: role of oxidative stress. Nanomed NBM 7(6):904–913

    Article  CAS  Google Scholar 

  • Ahamed M, Akhtar MJ, Siddiqui MA et al (2011b) Oxidative stress mediated apoptosis induced by nickel ferrite nanoparticles in cultured A549 cells. Toxicology 283(2–3):101–108

    Article  PubMed  CAS  Google Scholar 

  • Ahamed M, Alhadlaq HA, Khan MAM et al (2013a) Selective killing of cancer cells by iron oxide nanoparticles mediated through reactive oxygen species via p53 pathway. J Nanopart Res 15:1225

    Article  CAS  Google Scholar 

  • Ahamed M, Ali D, Alhadlaq HA et al (2013b) Nickel oxide nanoparticles exert cytotoxicity via oxidative stress and induce apoptotic response in human liver cells (HepG2). Chemosphere 93(10):2514–2522

    Article  PubMed  CAS  Google Scholar 

  • Akhtar MJ, Ahamed M, Kumar S et al (2012) Zinc oxide nanoparticles selectively induce apoptosis in human cancer cells through reactive oxygen species. Int J Nanomedicine 7:845–857

    PubMed Central  PubMed  CAS  Google Scholar 

  • Akhtar MJ, Kumar S, Alhadlaq HA et al (2013) Dose-dependent genotoxicity of copper oxide nanoparticles stimulated by reactive oxygen species in human lung epithelial cells. Toxicol Ind Health (Epub ahead of print)

  • Akhtar MJ, Ahamed M, Alhadlaq HA et al (2014) Targeted anticancer therapy: overexpressed receptors and nanotechnology. Clin Chim Acta 436:78–92

    Article  PubMed  CAS  Google Scholar 

  • Asati A, Santra S, Kaittanis C et al (2010) Surface-charge-dependent cell localization and cytotoxicity of cerium oxide nanoparticles. ACS Nano 4(9):5321–5331

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Asha Rani PV, Low Kah Mun G, Hande MP et al (2009) Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3(2):279–290

    Article  CAS  Google Scholar 

  • Auffan M, Achouak W, Jr Rose et al (2008) Relation between the redox state of iron-based nanoparticles and their cytotoxicity toward Escherichia coli. Environ Sci Technol 42(17):6730–6735

    Article  PubMed  CAS  Google Scholar 

  • Azad MB, Chen Y, Gibson SB et al (2009) Regulation of autophagy by reactive oxygen species (ROS): implications for cancer progression and treatment. Antioxid Redox Signal 11(4):777–790

    Article  PubMed  CAS  Google Scholar 

  • Bosanquet AG, Bell PB (2004) Ex vivo therapeutic index by drug sensitivity assay using fresh human normal and tumor cells. J Exp Ther Oncol 4(2):145–154

    PubMed  CAS  Google Scholar 

  • Boyle P, Levin B (2009) World cancer report 2008. International Agency for Research on Cancer World Health Organization, Geneva

    Google Scholar 

  • Brandon M, Baldi P, Wallace DC (2006) Mitochondrial mutations in cancer. Oncogene 25:4647–4662

    Article  PubMed  CAS  Google Scholar 

  • Cairns RA, Harris IS, Mak TW (2011) Regulation of cancer cell metabolism. Nat Rev Cancer 11(2):85–95

    Article  PubMed  CAS  Google Scholar 

  • Celardo I, Nicola MD, Mandoli C et al (2011) Ce3+ ions determine redox-dependent anti-apoptotic effect of cerium oxide nanoparticles. ACS Nano 5(6):4537–4549

    Article  PubMed  CAS  Google Scholar 

  • Chen N, Karantza-Wadsworth V (2009) Role and regulation of autophagy in cancer. Biochim Biophys Acta 1793(9):1516–1523

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Chen M, von Mikecz A (2005) Formation of nucleoplasmic protein aggregates impairs nuclear function in response to SiO2 nanoparticles. Exp Cell Res 305(1):51–62

    Article  PubMed  CAS  Google Scholar 

  • Chen Z, Trotman LC, Shaffer D et al (2005) Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature 436:725–730

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Chipuk JE, Moldoveanu T, Llambi F et al (2010) The BCL 2 family reunion. Mol Cell 37(3):299–310

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Cho YS, Challa S, Moquin D et al (2009) Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell 137(6):1112–1123

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Comoglio PM, Giordano S, Trusolino L (2008) Drug development of MET inhibitors: targeting oncogene addiction and expedience. Nat Rev Drug Discov 7(6):504–516

    Article  PubMed  CAS  Google Scholar 

  • Couzin J (2002) Cancer drugs. Smart weapons prove tough to design. Science 298(5593):522–525

    Article  PubMed  CAS  Google Scholar 

  • Cregan SP, Dawson VL, Slack RS (2004) Role of AIF in caspase-dependent and caspase-independent cell death. Oncogene 23(16):2785–2796

    Article  PubMed  CAS  Google Scholar 

  • Czabotar PE, Lessene G, Strasser A et al (2014) Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat Rev Mol Cell Biol 15(1):49–63

    Article  PubMed  CAS  Google Scholar 

  • Das S, Singh S, Dowding JM et al (2012) The induction of angiogenesis by cerium oxide NPs through the modulation of oxygen in intracellular environments. Biomaterials 33(31):7746–7755

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Degterev AJ, Hitomi M, Germscheid IL et al (2008) Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat Chem Biol 4(5):313–321

    Article  PubMed  CAS  Google Scholar 

  • Diehn M, Cho RW, Lobo NA et al (2009) Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature 458(7239):780–783

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Dowding JM, Dosani T, Kumar A et al (2012) Cerium oxide nanoparticles scavenge nitric oxide radical (˙NO). Chem Commun 48(40):4896–4898

    Article  CAS  Google Scholar 

  • Duprez L, Wirawan E, Vanden Berghe T et al (2009) Major cell death pathways at a glance. Microbes Infect 11(13):1050–1062

    Article  PubMed  CAS  Google Scholar 

  • Eom HJ, Choi J (2009) Oxidative stress of CeO2 nanoparticles via p38-Nrf-2 signaling pathway in human bronchial epithelial cell, Beas-2B. Toxicol Lett 187(2):77–83

    Article  PubMed  CAS  Google Scholar 

  • Fader CM, Colombo MI (2009) Autophagy and multivesicular bodies: two closely related partners. Cell Death Differ 16(1):70–78

    Article  PubMed  CAS  Google Scholar 

  • Fawcett H, Mader JS, Robichaud M et al (2005) Contribution of reactive oxygen species and caspase-3 to apoptosis and attenuated ICAM-1 expression by paclitaxel-treated MDA-MB-435 breast carcinoma cells. Int J Oncol 27(6):1717–1726

    PubMed  CAS  Google Scholar 

  • Ferreria CG, Epping M, Kruyt FAE et al (2002) Apoptosis: target of cancer therapy. Clin Cancer Res 8(7):2024–2034

    Google Scholar 

  • Festjens N, Vanden Berghe T, Vandenabeele P (2006) Necrosis, a well-orchestrated form of cell demise: signalling cascades, important mediators and concomitant immune response. Biochim Biophys Acta 1757(9):1371–1387

    Article  PubMed  CAS  Google Scholar 

  • Finkel T (2012) Signal transduction by mitochondrial oxidants. J Biol Chem 287(7):4434–4440

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Foldbjerg R, Olesen P, Hougaard M et al (2009) PVP-coated silver nanoparticles and silver ions induce reactive oxygen species, apoptosis and necrosis in THP-1 monocytes. Toxicol Lett 190(2):156–162

    Article  PubMed  CAS  Google Scholar 

  • Frantz S (2005) Drug discovery: playing dirty. Nature 437(7061):942–943

    Article  PubMed  CAS  Google Scholar 

  • Frantz S (2006) Drug approval triggers debate on future direction for cancer treatments. Nat Rev Drug Discov 5(2):91

    Article  PubMed  Google Scholar 

  • Fulda S, Debatin KM (2006) Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene 25(34):4798–4811

    Article  PubMed  CAS  Google Scholar 

  • Galluzzi L, Kepp O, Kroemer G (2009) RIP kinases initiate programmed necrosis. J Mol Cell Biol 1(1):8–10

    Article  PubMed  CAS  Google Scholar 

  • Gao Y, Chen K, Ma JL et al (2014) Cerium oxide nanoparticles in cancer. Onco Targets Ther 7:835–840

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Goharshadi EK, Samiee S, Nancarrow P et al (2011) Fabrication of cerium oxide NPs: characterization and optical properties. J Colloid Interface Sci 356(2):473–480

    Article  PubMed  CAS  Google Scholar 

  • Golstein P, Kroemer G (2006) Cell death by necrosis: towards a molecular definition. Trends Biochem Sci 32(1):37–43

    Article  PubMed  CAS  Google Scholar 

  • Gou N, Onnis-Hayden A, Gu AZ (2010) Mechanistic toxicity assessment of nanomaterials by whole-cell-array stress genes expression analysis. Environ Sci Technol 44(15):5964–5970

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B (2007) Oxidative stress and cancer: have we moved forward? Biochem J 401(1):1–11

    Article  PubMed  CAS  Google Scholar 

  • Hanahan D, Weinberg RA (2011) The hallmarks of cancer: the next generation. Cell 144(5):646–674

    Article  PubMed  CAS  Google Scholar 

  • Handy DE, Loscalzo J (2012) Redox regulation of mitochondrial function. Antioxid Redox Signal 16(11):1323–1367

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hanley C, Layne J, Punnoose A et al (2008) Preferential killing of cancer cells and activated human T cells using ZnO nanoparticles. Nanotechnology 19(29):295103

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hauck TS, Ghazani AA, Chan WCW (2008) Assessing the effect of surface chemistry on gold nanorod uptake, toxicity, and gene expression in mammalian cells. Small 4(1):153–159

    Article  PubMed  CAS  Google Scholar 

  • He S, Wang L, Miao L et al (2009) Receptor interacting protein kinase-3 determines cellular necrotic response to TNF alpha. Cell 137(6):1100–1111

    Article  PubMed  CAS  Google Scholar 

  • Hirst SM, Karakoti A, Singh S et al (2013) Bio-distribution and in vivo antioxidant effects of cerium oxide nanoparticles in mice. Environ Toxicol 28(2):107–118

    Article  PubMed  CAS  Google Scholar 

  • Horie M, Nishio K, Kato H et al (2011) Cellular responses induced by cerium oxide NPs: induction of intracellular calcium level and oxidative stress on culture cells. J Biochem 150(4):461–471

    Article  PubMed  CAS  Google Scholar 

  • Hossain MZ, Kleve MG (2011) Nickel nanowires induced and reactive oxygen species mediated apoptosis in human pancreatic adenocarcinoma cells. Int J Nanomed 6:1475–1485

    Article  CAS  Google Scholar 

  • Hotamisligil GS (2010) Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell 140(6):900–917

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hu Y, Rosen DG, Zhou Y et al (2005) Mitochondrial manganese-superoxide dismutase expression in ovarian cancer: role in cell proliferation and response to oxidative stress. J Biol Chem 280(47):39485–39492

    Article  PubMed  CAS  Google Scholar 

  • Huang HL, Fang LW, Lu SP et al (2003) DNA-damaging reagents induce apoptosis through reactive oxygen species-dependent Fas aggregation. Oncogene 22:8168–8177

    Article  PubMed  CAS  Google Scholar 

  • Hussain S, Al-Nsour F, Rice AB et al (2012) Cerium dioxide nanoparticles induce apoptosis and autophagy in human peripheral blood monocytes. ACS Nano 6(7):5820–5829

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ikeda K, Kajiwara K, Tanabe E et al (1999) Involvement of hydrogen peroxide and hydroxyl radical in chemically induced apoptosis of HL-60 cells. Biochem Pharmacol 57(12):1361–1365

    Article  PubMed  CAS  Google Scholar 

  • Jain PK, Huang X, El-Sayed IH et al (2008) Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc Chem Res 41(12):1578–1586

    Article  PubMed  CAS  Google Scholar 

  • Jemal A, Siegel R, Xu J et al (2010) Cancer statistics 2010. CA Cancer J Clin 60(5):277–300

    Article  PubMed  Google Scholar 

  • Jiang J, Oberdorster G, Elder A et al (2008) Does nanoparticle activity depend upon size and crystal phase? Nanotoxicology 2(1):33–42

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Jost PJ et al (2009) XIAP discriminates between type I and type II FAS-induced apoptosis. Nature 460(7258):1035–1039

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kamiguti AS, Serrander L, Lin K et al (2005) Expression and activity of NOX5 in the circulating malignant B cells of hairy cell leukemia. J. Immunol 175(12):8424–8430

    Article  PubMed  CAS  Google Scholar 

  • Karnoub AE, Weinberg RA (2008) Ras oncogenes: split personalities. Nat Rev Mol Cell Biol 9(7):517–531

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Klionsky DJ (2007) Autophagy: from phenomenology to molecular understanding in less than a decade. Nat Rev Mol Cell Biol 8(11):931–937

    Article  PubMed  CAS  Google Scholar 

  • Kroemer G, Jaattela M (2005) Lysosomes and autophagy in cell death control. Nat Rev Cancer 5(11):886–897

    Article  PubMed  CAS  Google Scholar 

  • Kroemer G, El-Deiry WS, Golstein P et al (2005) Classification of cell death: recommendations of the nomenclature committee on cell death. Cell Death Differ 12(Suppl 2):1463–1467

    Article  PubMed  CAS  Google Scholar 

  • Krysko DV, Vanden Berghe T, D’Herde K et al (2008) Apoptosis and necrosis: detection, discrimination and phagocytosis. Methods 44(3):205–221

    Article  PubMed  CAS  Google Scholar 

  • Kumar B, Koul S, Khandrika L et al (2008) Oxidative stress is inherent in prostate cancer cells and is required for aggressive phenotype. Cancer Res 68(6):1777–1785

    Article  PubMed  CAS  Google Scholar 

  • Laha D, Pramanik A, Maity J et al (2014) Interplay between autophagy and apoptosis mediated by copper oxide nanoparticles in human breast cancer cells MCF7. Biochim Biophys Acta 1840(1):1–9

    Article  PubMed  CAS  Google Scholar 

  • Lanone S, Boczkowski J (2006) Biomedical applications and potential health risks of nanomaterials: molecular mechanisms. Curr Mol Med 6(6):651–663

    Article  PubMed  CAS  Google Scholar 

  • Lee TY, Liu MS, Huang LJ et al (2013) Bioenergetic failure correlates with autophagy and apoptosis in rat liver following silver nanoparticle intraperitoneal administration. Part Fibre Toxicol 10:40

    Article  PubMed Central  PubMed  Google Scholar 

  • Lee YH, Cheng FY, Chiu HW et al (2014) Cytotoxicity, oxidative stress, apoptosis and the autophagic effects of silver nanoparticles in mouse embryonic fibroblasts. Biomaterials 35(16):4706–4715

    Article  PubMed  CAS  Google Scholar 

  • Leist M, Single B, Castoldi AF et al (1997) Intracellular adenosine triphosphate (ATP) concentration: a switch in the decision between apoptosis and necrosis. J Exp Med 185(8):1481–1486

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Leroueil PR, Berry SA, Duthie K et al (2008) Wide varieties of cationic nanoparticles induce defects in supported lipid bilayers. Nano Lett 8(2):420–424

    Article  PubMed  CAS  Google Scholar 

  • Li JJ, Hartono D, Ong CN et al (2010) Autophagy and oxidative stress associated with gold nanoparticles. Biomaterials 31(23):5996–6003

    Article  PubMed  CAS  Google Scholar 

  • Li JJ, Lo SL, Ng CT et al (2011) Genomic instability of gold nanoparticle treated human lung fibroblast cells. Biomaterials 32(23):5515–5523

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Mou Lin M et al (2011) Targeting apoptotic and autophagic pathways for cancer therapeutics. Cancer Lett 300(2):105–114

    Article  PubMed  CAS  Google Scholar 

  • Liu M, Gu X, Zhang K et al (2013) Gold nanoparticles trigger apoptosis and necrosis in lung cancer cells with low intracellular glutathione. J Nanopart Res 15:1745

    Article  CAS  Google Scholar 

  • Luke CJ, Pak SC, Askew YS et al (2007) An intracellular serpin regulates necrosis by inhibiting the induction and sequelae of lysosomal injury. Cell 130(6):1108–1119

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Luo J, Solimini NL, Elledge SJ (2009) Principles of cancer therapy: oncogene and non-oncogene addiction. Cell 136(5):823–837

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ma CG, Song MM, Zhang Y et al (2014) Nickel nanowires induce cell cycle arrest and apoptosis by generation of reactive oxygen species in HeLa cells. Toxicol Rep 1:114–121

    Article  CAS  Google Scholar 

  • Majno G, Joris I (1995) Apoptosis, oncosis, and necrosis: an overview of cell death. Am J Pathol 146(1):3–15

    PubMed Central  PubMed  CAS  Google Scholar 

  • Malhi H, Gores GJ, Lemasters JJ (2006) Apoptosis and necrosis in the liver: a tale of two deaths? Hepatology 43(Suppl 1):S31–S44

    Article  PubMed  CAS  Google Scholar 

  • Malhotra JD, Kaufman RJ (2007) Endoplasmic reticulum stress and oxidative stress: a vicious cycle or a double-edged sword? Antioxid Redox Signal 9(12):2277–2293

    Article  PubMed  CAS  Google Scholar 

  • Markovic ZM, Harhaji-Trajkovic LM, Todorovic-Markovic BM et al (2011) In vitro comparison of the photothermal anticancer activity of graphene nanoparticles and carbon nanotubes. Biomaterials 32(4):1121–1129

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Sanchez G, Giuliani A (2007) Cellular redox status regulates hypoxia inducible factor-1 activity. Role in tumour development. J Exp Clin Cancer Res 26(1):39–50

    PubMed  CAS  Google Scholar 

  • Mizushima N, Levine B, Cuervo AM et al (2008) Autophagy fights disease through cellular self-digestion. Nature 451(7182):1069–1075

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Muller M, Reichert AS (2011) Mitophagy, mitochondrial dynamics and the general stress response in yeast. Biochem Soc Trans 39(5):1514–1519

    Article  PubMed  CAS  Google Scholar 

  • Munoz-Pinedo C, El Mjiyad N, Ricci J-E (2012) Cancer metabolism: current perspectives and future directions. Cell Death Dis 3(1):e248

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Murawaki Y, Tsuchiya H, Kanbe T et al (2008) Aberrant expression of selenoproteins in the progression of colorectal cancer. Cancer Lett 259(2):218–230

    Article  PubMed  CAS  Google Scholar 

  • Nel AE, Xia T, Mädler L et al (2006) Toxic potential of materials at the nanolevel. Science 311(5761):622–627

    Article  PubMed  CAS  Google Scholar 

  • Nel AE, Madler L, Velegol D et al (2009) Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 8:543–557

    Article  PubMed  CAS  Google Scholar 

  • Ng KW, Khoo SPK, Heng BC et al (2011) The role of the tumor suppressor p53 pathway in the cellular DNA damage response to zinc oxide nanoparticles. Biomaterials 32(32):8218–8225

    Article  PubMed  CAS  Google Scholar 

  • Nie S, Xing Y, Kim GJ et al (2007) Nanotechnology applications in cancer. Annu Rev Biomed Eng 9:257–288

    Article  PubMed  CAS  Google Scholar 

  • Norbury CJ, Zhivotovsky B (2004) DNA damage-induced apoptosis. Oncogene 23(16):2797–2808

    Article  PubMed  CAS  Google Scholar 

  • Oberstein A, Jeffrey PD, Shi Y (2007) Crystal structure of the Bcl-XL-beclin 1 peptide complex: beclin 1 is a novel BH3-only protein. J Biol Chem 282(17):13123–13132

    Article  PubMed  CAS  Google Scholar 

  • Orrenius S, Nicotera P, Zhivotovsky B (2011) Cell death mechanisms and their implications in toxicology. Toxicol Sci 119(1):3–19

    Article  PubMed  CAS  Google Scholar 

  • Ostrovsky S, Kazimirsky G, Gedanken A et al (2009) Selective cytotoxic effect of ZnO nanoparticles on glioma cells. Nano Res 2(11):882–890

    Article  CAS  Google Scholar 

  • Patel BP, Rawal UM, Dave TK et al (2007) Lipid peroxidation, total antioxidant status, and total thiol levels predict overall survival in patients with oral squamous cell carcinoma. Integr Cancer Ther 6(4):365–372

    Article  PubMed  CAS  Google Scholar 

  • Periyasamy-Thandavan S, Jiang M, Schoenlein P (2009) Autophagy: molecular machinery, regulation, and implications for renal pathophysiology. Am J Physiol Renal Physiol 297(2):F244–F256

    Article  PubMed  CAS  Google Scholar 

  • Premanathan M, Karthikeyan K, Jeyasubramanian K et al (2011) Selective toxicity of ZnO nanoparticles toward Gram positive bacteria and cancer cells by apoptosis through lipid peroxidation. Nanomed NBM 7(2):184–192

    Article  CAS  Google Scholar 

  • Qian W, Liu J, Jin J et al (2007) Arsenic trioxide induces not only apoptosis but also autophagic cell death in leukemia cell lines via up-regulation of Beclin-1. Leuk Res 31(3):329–339

    Article  PubMed  CAS  Google Scholar 

  • Radisky DC, Levy DD, Littlepage LE et al (2005) Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability. Nature 436(7047):123–127

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Rahmani M, Reese E, Dai Y et al (2005) Co-administration of histone deacetylase inhibitors and perifosine synergistically induces apoptosis in human leukemia cells through Akt and ERK1/2 inactivation and the generation of ceramide and reactive oxygen species. Cancer Res 65(6):2422–2432

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen JW, Martinez E, Louka P et al (2010) Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications. Expert Opin Drug Deliv 7(9):1063–1077

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Rikiishi H (2012) Novel insights into the interplay between apoptosis and autophagy. Int J Cell Biol ID317645

  • Rodrigues MS, Reddy MM, Sattler M (2008) Cell cycle regulation by oncogenic tyrosine kinases in myeloid neoplasias: from molecular redox mechanisms to health implications. Antioxid Redox Signal 10(10):1813–1848

    Article  PubMed  CAS  Google Scholar 

  • Sau TK, Rogach AL, Jäckel F et al (2010) Properties and applications of colloidal nonspherical noble metal nanoparticles. Adv Mater 22(16):1805–1825

    Article  PubMed  CAS  Google Scholar 

  • Saydam N, Kirb A, Demir O et al (1997) Determination of glutathione, glutathione reductase, glutathione peroxidase and glutathione S-transferase levels in human lung cancer tissues. Cancer Lett 119(1):13–19

    Article  PubMed  CAS  Google Scholar 

  • Schrader M, Fahimi HD (2006) Peroxisomes and oxidative stress. Biochim Biophys Acta 1763:1755–1766

    Article  PubMed  CAS  Google Scholar 

  • Schulze-Bergkamen H, Krammer PH (2004) Apoptosis in cancer-implications for therapy. Semin Oncol 31(1):90–119

    Article  PubMed  CAS  Google Scholar 

  • Semisch A, Ohle J, Witt B et al (2014) Cytotoxicity and genotoxicity of nano—and microparticulate copper oxide: role of solubility and intracellular bioavailability. Part Fibre Toxicol 11:10

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Setyawati MI, Tay CY, Leong DT (2013) Effect of zinc oxide nanomaterials-induced oxidative stress on the p53 pathway. Biomaterials 34(38):10133–10142

    Article  PubMed  CAS  Google Scholar 

  • Simizu S, Takada M, Umezawa K et al (1998) Requirement of caspase-3 (-like) protease-mediated hydrogen peroxide production for apoptosis induced by various anticancer drugs. J Biol Chem 273(41):26900–26907

    Article  PubMed  CAS  Google Scholar 

  • Song H, Wang W, Zhao P et al (2014) Cuprous oxide nanoparticles inhibit angiogenesis via down regulation of VEGFR2 expression. Nanoscale 6(6):3206–3216

    Article  PubMed  CAS  Google Scholar 

  • Strasser A, Jost PJ, Nagata S (2009) The many roles of FAS receptor signaling in the immune system. Immunity 30(2):180–192

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sun T, Yan Y, Zhao Y et al (2012) Copper oxide nanoparticles induce autophagic cell death in A549 cells. PLoS ONE 7(8):e43442

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Tait SW, Green DR (2010) Mitochondria and cell death: outer membrane permeabilization and beyond. Nat Rev Mol Cell Biol 11(9):621–632

    Article  PubMed  CAS  Google Scholar 

  • Taylor RC, Cullen SP, Martin SJ (2008) Apoptosis: controlled demolition at the cellular level. Nat Rev Mol Cell Biol 9(3):231–241

    Article  PubMed  CAS  Google Scholar 

  • Thannickal VJ, Fanburg BL (2000) Reactive oxygen species in cell signaling. Am J Physiol 279(6):L1005–L1028

    CAS  Google Scholar 

  • Trachootham D, Zhou Y, Zhang H et al (2006) Selective killing of oncogenically transformed cells through a ROS-mediated mechanism by beta-phenylethyl isothiocyanate. Cancer Cell 10(3):241–252

    Article  PubMed  CAS  Google Scholar 

  • Trachootham D, Alexandre J, Huang P (2009) Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov 8:579–591

    Article  PubMed  CAS  Google Scholar 

  • Trichonas G, Murakami Y, Thanos A et al (2010) Receptor interacting protein kinases mediate retinal detachment-induced photoreceptor necrosis and compensate for inhibition of apoptosis. Proc Natl Acad Sci USA 107(50):21695–21700

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Tsao SM, Yin MC, Liu WH (2007) Oxidant stress and B vitamins status in patients with non-small cell lung cancer. Nutr Cancer 59(10):8–13

    Article  PubMed  CAS  Google Scholar 

  • Vallyathan V, Shi X (1997) The role of oxygen free radicals in occupational and environmental lung diseases. Environ Health Perspect 105(1):165–177

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Vandenabeele PT, Vanden Berghe N, Festjens N (2006) Caspase inhibitors promote alternative cell death pathways. Sci STKE 2006(358):pe44

    Article  PubMed  Google Scholar 

  • Vandenabeele P, Galluzzi L, Berghe TV et al (2010) Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat Rev Mol Cell Bio 11(10):700–714

    Article  CAS  Google Scholar 

  • Walczyk D, Bombelli FB, Monopoli MP et al (2010) What the cell “Sees” in bionanoscience. J Am Chem Soc 132(16):5761–5768

    Article  PubMed  CAS  Google Scholar 

  • Wang S, Konorev EA, Kotamraju S et al (2004) Doxorubicin induces apoptosis in normal and tumor cells via distinctly different mechanisms. J Biol Chem 279(24):25535–25543

    Article  PubMed  CAS  Google Scholar 

  • Wang MD, Shin DM, Simons JW et al (2007) Nanotechnology for targeted cancer therapy. Expert Rev Anticancer Ther 7(6):833–837

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Zi XY, Su J et al (2012) Cuprous oxide nanoparticles selectively induce apoptosis of tumor cells. Int J Nanomedicine 7:2641–2652

    PubMed Central  PubMed  CAS  Google Scholar 

  • Wang Y, Yang F, Zhang H-X et al (2013) Cuprous oxide nanoparticles inhibit the growth and metastasis of melanoma by targeting mitochondria. Cell Death Dis 4:e783

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wason MS, Colon J, Das S et al (2013) Sensitization of pancreatic cancer cells to radiation by cerium oxide nanoparticle-induced ROS production. Nanomed NBM 9(4):558–569

    Article  CAS  Google Scholar 

  • Wilhelmi V, Fischer U, Weighardt H et al (2013) Zinc oxide nanoparticles induce necrosis and apoptosis in macrophages in a p47phox- and Nrf2-independent manner. PLoS ONE 8(6):e65704

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wu WS (2006) The signaling mechanism of ROS in tumor progression. Cancer Metastasis Rev 25(4):695–705

    Article  PubMed  CAS  Google Scholar 

  • Wullschleger S, Loewith R, Hall MN (2006) TOR signaling in growth and metabolism. Cell 124(3):471–484

    Article  PubMed  CAS  Google Scholar 

  • Xia T, Kovochich M, Liong M et al (2008) Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2(10):2121–2134

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Xu C, Qu X (2014) Cerium oxide nanoparticle: a remarkably versatile rare earth nanomaterial for biological applications. NPG Asia Mater 6:e90

    Article  CAS  Google Scholar 

  • Xue Y, Luan QF, Yang D et al (2011) Direct evidence for hydroxyl radical scavenging activity of cerium oxide nanoparticles. J Phys Chem C Nanomater Interfaces 115(11):4433–4438

    Article  CAS  Google Scholar 

  • Ye S, Chen M, Jiang Y et al (2014) Polyhydroxylated fullerene attenuates oxidative stress-induced apoptosis via a fortifying Nrf2-regulated cellular antioxidant defence system. Int J Nanomed 9:2073–2087

    Article  Google Scholar 

  • Yin JJ, Lao F, Fu PP et al (2009) The scavenging of reactive oxygen species and the potential for cell protection by functionalized fullerene materials. Biomaterials 30(4):611–621

    Article  PubMed  CAS  Google Scholar 

  • Zhang DW, Shao J, Lin J et al (2009) RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science 325(5938):332–336

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Chen B, Jiang H et al (2011) A strategy for ZnO nanorod mediated multi-mode cancer treatment. Biomaterials 32(7):1906–1914

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Ji Z, Xia T et al (2012) Use of metal oxide nanoparticle band gap to develop a predictive paradigm for oxidative stress and acute pulmonary inflammation. ACS Nano 6(5):4349–4368

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zhao J, Bowman L, Zhang X et al (2009) Metallic nickel nano- and fine particles induce JB6 cell apoptosis through a caspase-8/AIF mediated cytochrome c-independent pathway. J Nanobiotechnol 7:2

    Article  CAS  Google Scholar 

  • Zhou Y, Hileman EO, Plunkett W et al (2003) Free radical stress in chronic lymphocytic leukemia cells and its role in cellular sensitivity to ROS generating anticancer agents. Blood 101(10):4098–4104

    Article  PubMed  CAS  Google Scholar 

  • Zong WX, Thompson CB (2006) Necrotic death as a cell fate. Genes Dev 20(1):1–15

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by the Research Chair of King Saud University on Drug Targeting and Treatment of Cancer using Nanoparticles.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maqusood Ahamed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akhtar, M.J., Alhadlaq, H.A., Kumar, S. et al. Selective cancer-killing ability of metal-based nanoparticles: implications for cancer therapy. Arch Toxicol 89, 1895–1907 (2015). https://doi.org/10.1007/s00204-015-1570-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-015-1570-1

Keywords

Navigation