Skip to main content
Log in

The in vitro PIG-A gene mutation assay: mutagenicity testing via flow cytometry based on the glycosylphosphatidylinositol (GPI) status of TK6 cells

  • Genotoxicity and Carcinogenicity
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

The X-linked PIG-A gene is involved in the biosynthesis of the cell surface anchor GPI, and its inactivation may serve as a new marker for mutagenicity. The in vivo PIG-A gene mutation assay is currently being validated by several groups. In this study, we established a corresponding in vitro variant of the PIG-A assay applying B-lymphoblastoid TK6 cells. PE-conjugated antibodies against the GPI-anchored proteins CD55 and CD59 were used to determine the GPI status via multicolor flow cytometry. Mutant spiked TK6 cell samples were analyzed, and mutants were quantified with even small numbers being quantitatively recovered. To validate our approach, mutant spiked cell samples were analyzed by flow cytometry and proaerolysin selection in parallel, yielding a high correlation. Further, we developed a procedure to reduce the background level of preexisting mutant cells to lower than 20 in 106 cells to increase the sensitivity of the assay. Spontaneous rate of GPI deficiency was investigated being 0.76 × 10−6/cell/generation for TK6 cells. The optimal phenotype expression time after ethyl methanesulfonate treatment was found to be 10 days. We applied the in vitro PIG-A assay to demonstrate the mutagenicity of ethyl methanesulfonate, 4-nitroquinoline 1-oxide and UV-C irradiation in a dose-dependent and statistically significant manner. Pyridine and cycloheximide were included as negative controls providing negative test results up to 10 mM. These data suggest that the in vitro PIG-A assay could complement the in vivo PIG-A assay with some distinct advantages compared to other in vitro mammalian mutagenicity tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abrami L et al (1998) The pore-forming toxin proaerolysin is activated by furin. J Biol Chem 273:32656–32661

    Article  CAS  PubMed  Google Scholar 

  • Amundson SA, Liber HL (1991) A comparison of induced mutation at homologous alleles of the tk locus in human cells. Mutat Res Fund Mol Mech Mutagen 247:19–27

    Article  CAS  Google Scholar 

  • Araten DJ, Nafa K, Pakdeesuwan K, Luzzatto L (1999) Clonal populations of hematopoietic cells with paroxysmal nocturnal hemoglobinuria genotype and phenotype are present in normal individuals. Proc Natl Acad Sci 96:5209–5214

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Araten D et al (2002) Dynamics of hematopoiesis in paroxysmal nocturnal hemoglobinuria (PNH): no evidence for intrinsic growth advantage of PNH clones. Leukemia 16:2243

    Article  CAS  PubMed  Google Scholar 

  • Araten DJ, Golde DW, Zhang RH, Thaler HT, Gargiulo L, Notaro R, Luzzatto L (2005) A quantitative measurement of the human somatic mutation rate. Cancer Res 65:8111–8117

    Article  CAS  PubMed  Google Scholar 

  • Araten DJ, Martinez-Climent JA, Perle MA, Holm E, Zamechek L, DiTata K, Sanders KJ (2010) A quantitative analysis of genomic instability in lymphoid and plasma cell neoplasms based on the PIG-A gene. Mutat Res Fund Mol Mech Mutagen 686:1–8

    Article  CAS  Google Scholar 

  • Beranek DT (1990) Distribution of methyl and ethyl adducts following alkylation with monofunctional alkylating agents. Mutat Res Fund Mol Mech 231:11–30

    Article  CAS  Google Scholar 

  • Bessler M et al (1994) Paroxysmal nocturnal haemoglobinuria (PNH) is caused by somatic mutations in the PIG-A gene. EMBO J 13:110

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bhalli JA, Shaddock JG, Pearce MG, Dobrovolsky VN, Cao X, Heflich RH, Vohr HW (2011) Report on stage III Pig-a mutation assays using benzo [a] pyrene. Environ Mol Mutagen 52:731–737

    Article  CAS  PubMed  Google Scholar 

  • Bryce SM, Bemis JC, Dertinger SD (2008) In vivo mutation assay based on the endogenous Pig-a locus. Environ Mol Mutagen 49:256–264

    Article  CAS  PubMed  Google Scholar 

  • Cammerer Z et al (2011) Report on stage III Pig-a mutation assays using N-ethyl-N-nitrosourea—comparison with other in vivo genotoxicity endpoints. Environ Mol Mutagen 52:721–730

    Article  CAS  PubMed  Google Scholar 

  • Dertinger SD et al (2011) International Pig-a gene mutation assay trial: evaluation of transferability across 14 laboratories. Environ Mol Mutagen 52:690–698

    Article  CAS  PubMed  Google Scholar 

  • Diep DB, Nelson KL, Raja SM, Pleshak EN, Buckley JT (1998) Glycosylphosphatidylinositol anchors of membrane glycoproteins are binding determinants for the channel-forming toxin aerolysin. J Biol Chem 273:2355–2360

    Article  CAS  PubMed  Google Scholar 

  • Dobrovolsky VN, Miura D, Heflich RH, Dertinger SD (2010) The in vivo Pig-a gene mutation assay, a potential tool for regulatory safety assessment. Environ Mol Mutagen 51:825–835

    Article  CAS  PubMed  Google Scholar 

  • Enninga IC, Groenendijk R, Filon A, Van Zeeland A, Simons J (1986) The wavelength dependence of UV-induced pyrimidine dimer formation, cell killing and mutation induction in human diploid skin fibroblasts. Carcinogenesis 7:1829–1836

    Article  CAS  PubMed  Google Scholar 

  • Fellows MD, McDermott A, Clare KR, Doherty A, Aardema MJ (2014) The spectral karyotype of L5178Y TK+/− mouse lymphoma cells clone 3.7. 2C and factors affecting mutant frequency at the thymidine kinase (tk) locus in the microtitre mouse lymphoma assay. Environ Mol Mutagen 55:35–42

    Article  CAS  PubMed  Google Scholar 

  • Fetterhoff T, Holland S, Wile K (1993) Fluorescent detection of non-viable cells in fixed cell preparations. Cytometry 14:27

    Google Scholar 

  • Furth EE, Thilly WG, Penman BW, Liber HL, Rand WM (1981) Quantitative assay for mutation in diploid human lymphoblasts using microtiter plates. Anal Biochem 110:1–8

    Article  CAS  PubMed  Google Scholar 

  • Fuscoe J, Ockey CH, Fox M (1986) Molecular analysis of X-ray-induced mutants at the HPRT locus in V79 Chinese hamster cells. Int J Radiat Biol 49:1011–1020

    Article  CAS  Google Scholar 

  • Glaab WE, Tindall KR (1997) Mutation rate at the hprt locus in human cancer cell lines with specific mismatch repair-gene defects. Carcinogenesis 18:1–8

    Article  CAS  PubMed  Google Scholar 

  • Green MH, O’Neill JP, Cole J (1995) Suggestions concerning the relationship between mutant frequency and mutation rate at the hprt locus in human peripheral T-lymphocytes. Mutat Res Environ Mutagen 334:323–339

    Article  CAS  Google Scholar 

  • Grosovsky AJ, Parks KK, Giver CR, Nelson SL (1996) Clonal analysis of delayed karyotypic abnormalities and gene mutations in radiation-induced genetic instability. Mol Cell Biol 16:6252–6262

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hillmen P, Bessler M, Mason PJ, Watkins WM, Luzzatto L (1993) Specific defect in N-acetylglucosamine incorporation in the biosynthesis of the glycosylphosphatidylinositol anchor in cloned cell lines from patients with paroxysmal nocturnal hemoglobinuria. Proc Natl Acad Sci 90:5272–5276

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jacobson ED, Krell K, Dempsey MJ (1981) The wavelength dependence of ultraviolet light-induced cell killing and mutagenesis in L5178Y mouse lymphoma cells. J Photochem Photobiol 33:257–260

    Article  CAS  Google Scholar 

  • Jhappan C, Noonan FP, Merlino G (2003) Ultraviolet radiation and cutaneous malignant melanoma. Oncogene 22:3099–3112

    Article  CAS  PubMed  Google Scholar 

  • Kirkland D, Aardema M, Henderson L, Müller L (2005) Evaluation of the ability of a battery of three in vitro genotoxicity tests to discriminate rodent carcinogens and non-carcinogens I. Sensitivity, specificity and relative predictivity. Mutat Res 584:1

    Article  CAS  PubMed  Google Scholar 

  • Kirkland D, Reeve L, Gatehouse D, Vanparys P (2011) A core in vitro genotoxicity battery comprising the ames test plus the in vitro micronucleus test is sufficient to detect rodent carcinogens and in vivo genotoxins. Mutat Res Genet Toxicol Environ 721:27–73

    Article  CAS  Google Scholar 

  • Kodama Y, Boreiko CJ, Skopek TR, Recio L (1989) Cytogenetic analysis of spontaneous and 2-cyanoethylene oxide-induced tk−/− mutants in TK6 human lymphoblastoid cultures. Environ Mol Mutagen 14:149–154

    Article  CAS  PubMed  Google Scholar 

  • Koyama N et al (2006) Genotoxicity of acrylamide and glycidamide in human lymphoblastoid TK6 cells. Mutat Res Genet Toxicol Environ 603:151–158

    Article  CAS  Google Scholar 

  • Krawitz PM et al (2013) A case of paroxysmal nocturnal hemoglobinuria caused by a germline mutation and a somatic mutation in PIGT. Blood 122:1312–1315

    Article  CAS  PubMed  Google Scholar 

  • Luzzatto L (2013) PNH from mutations of another PIG gene. Blood 122:1099–1100

    Article  CAS  PubMed  Google Scholar 

  • Miura D, Dobrovolsky VN, Mittelstaedt RA, Kasahara Y, Katsuura Y, Heflich RH (2008a) development of an in vivo gene mutation assay using the endogenous Pig-A gene: II. Selection of Pig-A Mutant rat spleen T-cells with proaerolysin and sequencing Pig-A cDNA from the mutants. Environ Mol Mutagen 49:622–630

    Article  CAS  PubMed  Google Scholar 

  • Miura D, Dorovolsky VN, Kasahara Y, Katsuura Y, Heflich RH (2008b) Development of an in vivo gene mutation assay using the endogenous Pig-A gene: I. Flow cytometric detection of CD59-negative peripheral red blood cells and CD48-negative spleen T-cells from the rat. Environ Mol Mutagen 49:614–621

    Article  CAS  PubMed  Google Scholar 

  • Miura D, Shaddock JG, Mittelstaedt RA, Dobrovolsky VN, Kimoto T, Kasahara Y, Heflich RH (2011) Analysis of mutations in the Pig-a gene of spleen T-cells from N-ethyl-N-nitrosourea-treated fisher 344 rats. Environ Mol Mutagen 52:419–423

    Article  CAS  PubMed  Google Scholar 

  • Morris SM (2002) A role for p53 in the frequency and mechanism of mutation. Mutat Res Rev Mutat 511:45–62

    Article  CAS  Google Scholar 

  • Nakamura J, Gul H, Tian X, Bultman SJ, Swenberg JA (2012) Detection of PIGO-deficient cells using proaerolysin: a valuable tool to investigate mechanisms of mutagenesis in the DT40 cell system. PLoS ONE 7:e33563

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • OECD (1997) Organisation for economic co-operation and development (OECD). Test No. 476: in vitro mammalian cell gene mutation test

  • Parker MW, Van Der Goot FG, Buckley JT (2003) Aerolysin—The ins and outs of a model channel-forming toxin. Mol Microbiol 19:205–212

    Article  Google Scholar 

  • Parry JM, Parry EM (2012) Methods in molecular biology 817 (springer protocols)—Genetic toxicology: principles and methods. Humana Press, New York

    Google Scholar 

  • Peruzzi B, Araten DJ, Notaro R, Luzzatto L (2010) The use of PIG-A as a sentinel gene for the study of the somatic mutation rate and of mutagenic agents in vivo. Mutat Res Rev Mutat 705:3–10

    Article  CAS  Google Scholar 

  • Phonethepswath S, Bryce SM, Bemis JC, Dertinger SD (2008) Erythrocyte-based Pig-a gene mutation assay: demonstration of cross-species potential. Mutat Res Genet Toxicol Environ 657:122–126

    Article  CAS  Google Scholar 

  • Phonethepswath S et al (2010) Pig-a Mutation: kinetics in rat erythrocytes following exposure to five prototypical mutagens. Toxicol Sci 114:59–70

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rosti V, Tremml G, Soares V, Pandolfi PP, Luzzatto L, Bessler M (1997) Murine embryonic stem cells without pig-a gene activity are competent for hematopoiesis with the PNH phenotype but not for clonal expansion. J Clin Invest 100:1028

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rothfuss A et al (2011) Improvement of in vivo genotoxicity assessment: combination of acute tests and integration into standard toxicity testing. Mutat Res 723:108–120

    Article  CAS  PubMed  Google Scholar 

  • Ryu J-C et al (1999) Mutation spectrum of 4-nitroquinoline N-oxide in the lacI transgenic big blue rat2 cell line. Mutat Res Genet Toxicol Environ 445:127–135

    Article  CAS  Google Scholar 

  • Schneider-Poetsch T et al (2010) Inhibition of eukaryotic translation elongation by cycloheximide and lactimidomycin. Nat Chem Biol 6:209–217

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schuler M, Gollapudi BB, Thybaud V, Kim JH (2011) Need and potential value of the Pig-a in vivo mutation assay—a hesi perspective. Environ Mol Mutagen 52:685–689

    Article  CAS  PubMed  Google Scholar 

  • Steen AM, Meyer KG, Recio L (1997a) Analysis of hprt mutations occurring in human TK6 lymphoblastoid cells following exposure to 1, 2, 3, 4-diepoxybutane. Mutagenesis 12:61–67

    Article  CAS  PubMed  Google Scholar 

  • Steen AM, Meyer KG, Recio L (1997b) Characterization of hprt mutations following l, 2-epoxy-3-butene exposure of human TK6 cells. Mutagenesis 12:359–364

    Article  CAS  PubMed  Google Scholar 

  • Takeda J et al (1993) Deficiency of the GPI anchor caused by a somatic mutation of the PIG-A gene in paroxysmal nocturnal hemoglobinuria. Cell 73:703–711

    Article  CAS  PubMed  Google Scholar 

  • Van Zeeland A, Simons J (1976) Linear dose–response relationships after prolonged expression times in V-79 Chinese hamster cells. Mutat Res Fund Mol Mech 35:129–137

    Article  Google Scholar 

  • Zölzer F, Kiefer J (1984) Wavelength dependence of inactivation and mutation induction to 6-thioguanine-resistance in V79 Chinese hamster fibroblasts. J Photochem Photobiol 40:49–53

    Article  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the Deutsche Forschungsgemeinschaft (Excellence Initiative KIT).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Hartwig.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krüger, C.T., Hofmann, M. & Hartwig, A. The in vitro PIG-A gene mutation assay: mutagenicity testing via flow cytometry based on the glycosylphosphatidylinositol (GPI) status of TK6 cells. Arch Toxicol 89, 2429–2443 (2015). https://doi.org/10.1007/s00204-014-1413-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-014-1413-5

Keywords

Navigation