Skip to main content
Log in

Comparison of xenobiotic metabolizing enzyme activities in ex vivo human skin and reconstructed human skin models from SkinEthic

  • Toxicokinetics and Metabolism
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Skin function is not limited to a physical barrier. According to its total surface area, it is also considered as an extra-hepatic metabolizing organ. In vitro engineered human skins have been developed to replace limited ex vivo normal human skin samples (NHS). Thus, assessing and comparing skin models from SkinEthic [Episkin™, RHE™ and the full thickness model (FTM)] with NHS in terms of metabolic capability are essential. The apparent activities of main cutaneous isoforms of cytochrome P450-dependent monooxygenases (CYP1A1/1B1, 2B6/2C18/2E1, 3A5/3A7), esterase, glutathione-S-[(GST), A, M, P, T], N-acetyl-(NAT1), uridinyl-diphosphate glucuronyl-(UDPGT 1A family) and sulfo-(SULT1A1) transferases were determined using probe substrates. Mean activities indicative of CYP1A1/1B1 (expressed as pmol/mg protein/6 h) in RHE™ (2.8) and FTM (2.6) were very similar to NHS (3.0) while Episkin™ showed a higher activity (9.1). Activities of CYP3A5/3A7 in FTM (3.3) and Episkin™ (3.6) were similar to NHS (3.8) while activity in RHE™ (13.3) was higher. CYP2B6/2C18/2E1 activity was below LOQ (0.5) in all skin models and NHS. Comparable intrinsic metabolic clearances were measured between NHS and skin models for esterase, UDPGT, GST and NAT1 activities. SULT1A1 activity toward probe substrates was not detected in skin models and observed at the limit of detection in NHS. Weak cytochrome P450-dependent monooxygenases, high esterase and transferase activities suggested that NHS and skin models exhibited limited functionalization and much greater detoxification (hydrolytic and conjugating) capacities. These results demonstrate that skin models are similar to NHS in terms of metabolic functionality toward xenobiotics investigated and useful tools to assess both the local efficiency and safety of cosmetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BSA:

Bovine serum albumin

CDNB:

Chloro-2,4-dinitrobenzene

CYP:

Cytochrome P450-dependent monooxygenases

DNPSG:

Dinitrophenyl S-glutathione conjugate

EROD:

7-ethoxy resorufin O-deethylase

ES:

Esterases

FTM:

Full thickness model of SkinEthic

GST:

Glutathione-S transferases

HPLC:

High-performance liquid chromatography

LOD:

Limit of detection

LOQ:

Limit of quantification

MTT:

1-(4,5-Dimethylthiazol-2-yl)-3,5-diphenyltetrazolium bromide

NAT:

N-acetyl transferases

α-NF:

α-Naphthoflavone

NHS:

Normal human skin

PABA:

para-Aminobenzoic acid

PAcBA:

para-Acetamidobenzoic acid

PNP:

para-Nitrophenol

PNPS:

para-Nitrophenyl sulfate

RT-PCR:

Real-time polymerase chain reaction

SDS:

Sodium dodecyl sulfate

S.E.M:

Standard error of the mean

SPE:

Solid-phase extraction

SULT:

Sulfo-transferases

TCA:

Trichloroacetic acid

TFA:

Trifluoroacetic acid

UDPGT:

Uridyl diphosphate glucuronyl transferases

4-MU:

4-Methylumbelliferone

4-MUAc:

4-Methylumbelliferyl acetate

4-MUG:

4-Methylumbelliferyl-β-glucuronide

7-BFCOD:

7-Benzyloxy-4-(trifluoromethyl)-coumarin O-debenzylation

7-BFC:

7-Benzyloxy-4-(trifluoromethyl)-coumarin

7-ER:

7-Ethoxyresorufin

7-HFC:

7-Hydroxy-4-(trifluoromethyl)-coumarin

7-MFCOD:

7-Methoxy-4-(trifluoromethyl)-coumarin O-demethylase

7-MFC:

7-Methoxy-4-(trifluoromethyl)-coumarin

References

  • Bourrié M, Meunier V, Berger Y, Fabre G (1996) Cytochrome P450 isoform inhibitors as tool for the investigation of metabolic reaction catalyzed by human liver microsomes. J Pharm Exp Therap 277(1):321–332

    Google Scholar 

  • Bursztyka J, Debrauwer L, Perdu E, Jouanin I, Jaeg JP, Cravedi JP (2008) Biotransformation of vinclozolin in rat precision-cut liver slices: comparison with in vivo metabolic pattern. J Agric Food Chem 56(12):4832–4839

    Article  CAS  PubMed  Google Scholar 

  • Chung-sang H, Hsiu-Maan K, Chun-Su Y, Te-Mao L (2004) Evidence for arylamine N-acetyltransferase activity in Klebsiella pneumoniae. J Microbiol Immunol Infect 37(4):208–215

    Google Scholar 

  • Cotovio J, Roguet R, Pion FX, Rougier A, Leclaire J (1996) Effect of imidazole derivatives on cytochrome P-450 enzyme activities in a reconstructed human epidermis. Skin Pharmacol 9(4):242–249

    Article  CAS  PubMed  Google Scholar 

  • Ekins S, Murray GI, Burke MD, Williams JA, Marchant NC, Hawksworth GM (1995) Quantitative differences in phase I and II metabolism between rat precision-cut liver slices and isolated hepatocytes. Drug Metab Dispos 23(11):1274–1279

    CAS  PubMed  Google Scholar 

  • Gibbs S, Van de Sandt JJM, Merk HF, Lockley DJ, Pendlington RU, Pease CK (2007) Xenobiotic metabolism in human skin and 3d human skin reconstructs. Rev Curr Drug Metab 8(8):1–15. doi:10.2174/138920007782798225

    Google Scholar 

  • Götz C, Pfeiffer R, Tigges J, Blatz V, Jäckh C, Freytag EM, Fabian F, Landsiedel R, Merk HF, Krutmann J, Edwards RJ, Pease C, Goebel C, Hewitt N, Fritsche E (2012) Xenobiotic metabolism capacities of human skin in comparison with a 3D epidermis model and keratinocyte-based cell culture as in vitro alternatives for chemical testing: activating enzymes (Phase I). Exp Dermatol 21:358–363. doi:10.1111/j.1600-0625.2012.01486

    Article  PubMed  Google Scholar 

  • Harris IR, Siefken W, Beck-Oldach K, Brandt M, Wittern KP, Pollet D (2002) Comparison of activities dependent on glutathione s-transferase and cytochrome P-450 Ia1 in cultured keratinocytes and reconstructed epidermal models. Skin Pharmacol Appl 15(suppl1):59–67

    Article  CAS  Google Scholar 

  • He D, Falany CN (2006) Characterization of proline-serine-rich carboxyl terminus in human sulfotransferase 2B1b: immunogenicity, subcellular localization, kinetic properties, and phosphorylation. Drug Metab Dispos 34(10):1749–1755. doi:10.1124/dmd.106.011114

    Article  CAS  PubMed  Google Scholar 

  • Hewitt NJ, Edwards RJ, Fritsche E, Goebel C, Aeby P, Scheel J, Reisinger K, Ouédraogo G, Duche D, Eilstein J, Latil A, Kenny J, Moore C, Kuehnl J, Barroso J, Fautz R, Pfuhler S (2013) Use of human in vitro skin models for accurate and ethical risk assessment: metabolic considerations. Toxicol Sci 133(2):209–217. doi:10.1093/toxsci/kft080

    Article  CAS  PubMed  Google Scholar 

  • Hu T, Khambatta ZS, Hayden PJ, Bolmarcich J, Binder RL, Robinson MK, Carr GJ, Tiesmann JP, Jarrold BB, Osborne R, Reichling TD, Nemeth ST, Aardema MJ (2010) Xenobiotic metabolism gene expression in the Epiderm™ in vitro 3D human epidermis model compared to human skin. Toxicol In Vitro 24(5):1450–1463. doi:10.1016/j.tiv2010.03.013

    Article  CAS  PubMed  Google Scholar 

  • Jewell C, Ackermann C, Payne NA, Fate G, Voorman R, Williams F (2007) Specificity of procaine and ester hydrolysis by human, minipig, and rat skin and liver. Drug Metab Dispos 35(11):2015–2022. doi:10.1124/dmd.107.015727

    Article  CAS  PubMed  Google Scholar 

  • Katiyar SK, Matsui MS, Mukhtar H (2000) Ultraviolet-B exposure of human skin Induces cytochromes P450 1A1 and 1B1. J Invest Dermatol 114(2):328–333

    Article  CAS  PubMed  Google Scholar 

  • Kondo H, Moriuchi F, Sunamoto J (1981) S & → N and N & → S Reverse rearrangement of S- and N-(2.4-dinitrophenyl)cysteines. J Org Chem 46:1333–1336

    Article  CAS  Google Scholar 

  • Kürschner U (2007) Untersuchungen zur Toxizität und Biotransformation an der humanen Keratinozytenzelllinie HaCaT. PhD Thesis, der Martin- Luther- Universität Halle- Wittenberg

  • Lokeshwar VB, Lopez LE, Munoz D, Chi A, Shirodkar SP, Lokeshwar SD, Escudero DO, Dhir N, Altman N (2010) Antitumor activity of hyaluronic acid synthesis inhibitor 4-methylumbelliferone in prostate cancer cells. Cancer Res 70(7):2613–2623. doi:10.1158/0008-5472

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Luu-The V, Ferraris C, Duche D, Leclaire J, Labrie F (2007) Steroid metabolism and profile of steroidogenic gene expression in EpiskinTM: high similarity with human epidermis. J Steroid Biochem Mol Biol 107(1–2):30–36. doi:10.1016/j.jsbmb.2007.03.036

    Article  CAS  PubMed  Google Scholar 

  • Luu-The V, Duche D, Ferraris C, Meunier JR, Leclaire J, Labrie F (2009) Expression profiles of phases 1 and 2 metabolizing enzymes in human skin and the reconstructed skin models EpiskinTM and full thickness model from EpiskinTM. J Steroid Biochem Mol Biol 116(3–5):178–186

    Article  CAS  PubMed  Google Scholar 

  • McNeilly AD, Woods JA, Ibbotson SH, Roland Wolf C, Smith G (2012) Characterization of a human keratinocyte HaCaT cell line model to study the regulation of CYP2S1. Drug Metab Dispos 40(2):283–289. doi:10.1124/dmd.111.042085

    Article  CAS  PubMed  Google Scholar 

  • Merk HF (1997) Chapter 5—skin metabolism. In: Lepoittevin JP, Basketter DA, Goosens A, Karlberg AT (eds) Allergic contact dermatitis. Springer, London, pp 68–80

    Google Scholar 

  • Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65(1–2):55–63

    Article  CAS  PubMed  Google Scholar 

  • Oesch F, Fabian E, Oesch-Bartlomowicz B, Werner C, Landsiedel R (2007) Drug-metabolizing enzymes in the skin of man, rat, and pig. Drug Metab Rev 39(4):659–698. doi:10.1080/03602530701690366

    Article  CAS  PubMed  Google Scholar 

  • Park HJ, Cho HY, Kong KH (2005) Purification and biochemical properties of glutathione S-transferase from Lactuca sativa. J Biochem Mol Biol 38(2):232–237

    Article  CAS  PubMed  Google Scholar 

  • Sànchez-Gòmez FJ, Gayarre J, Avellano MI, Pérez-Sala D (2007) Direct evidence for the covalent modification of glutathione-S-transferase P1-1 by electrophilic prostaglandins: implication for enzyme inactivation and cell survival. Arch Biochem Biophys 457(2):150–159

    Article  PubMed  Google Scholar 

  • Scientific committee on consumer products opinion on 4-aminobenzoic acid (PABA). http://ec.europa.eu/health/ph_risk/committees/04_sccp/docs/sccp_o_058.pdf (Accessed 2006)

  • Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Measurement of protein using bicinchoninic acid. Analyt Biochem 150(1):76–85

    Article  CAS  PubMed  Google Scholar 

  • Stresser MD, Blachard PA, Turner SD, Erve JCL, Dandeneau AA, Miller VP, Crespi CL (2000) Substrate-dependent modulation of CYP3A4 catalytic activity: analysis of 27 test compounds with four fluorometric substrates. Drug Metab Dispos 28(12):1440–1448

    CAS  PubMed  Google Scholar 

  • Svensson CK (2009) Minireview biotransformation of drug in human skin. Drug Metab Dispos 37(2):247–253. doi:10.1124/dmd.108.024794

    Article  CAS  PubMed  Google Scholar 

  • Tang SS, Chang GG (1996) Kinetic mechanism of octopus hepatopancreatic glutathione transferase in reverse micelles. Biochem J 315(2):599–606

    CAS  PubMed Central  PubMed  Google Scholar 

  • Testa B, Krämer D (2008) In: Kisakürek MV, Kolitzus T (eds) The biochemistry of drug metabolism: principle, redox reaction, hydrolyses. Verlag Helvetica Chimica Acta, Zürich

  • Tinois E, Tiollier J, Gaucherand M, Dumas H, Tardy M, Thivolet J (1991) In vitro and post-transplantation differentiation of human keratinocytes grown on the human type IV collagen film of a bilayered dermal substitute. Exp Cell Res 193(2):310–319

    Article  CAS  PubMed  Google Scholar 

  • Tobin DJ (2006) Biochemistry of human skin-our brain of the outside. Chem Soc Rev 35(1):52–67

    Article  CAS  PubMed  Google Scholar 

  • Uchaipichat V, Mackenzie PI, Guo XH, Gardner-Stephen D, Galetin A, Houston JB, Miners J (2004) Human UDP-glucuronosyltransferases: isoform selectivity and kinetics of 4-methylumbelliferone and 1-naphthol glucuronidation, effects of organic solvents, and inhibition by diclofenac and probenecid. Drug Metab Dispos 32(4):413–423. doi:10.1124/dmd.32.4.413

    Article  CAS  PubMed  Google Scholar 

  • Vaidya SS, Gerk PM (2007) Simultaneous determination of 1-chloro-2.4-dinitrobenzene, 2.4-dinitrophenyl-S-glutathione and its metabolites for human placental disposition studies by high-performance liquid chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 859:94–102

    Article  CAS  PubMed  Google Scholar 

  • Van Eijl S, Zhu Z, Cupitt J, Gierula M, Götz C, Fritsche E, Edwards RJ (2012) Elucidation of xenobiotic metabolism pathways in human skin and human skin models by proteomic profiling. PLoS ONE 7(7):e41721. doi:10.1371/journal.pone.0041721

    Article  PubMed Central  PubMed  Google Scholar 

  • Walkera K, Ginsbergb G, Hattisa D, Johnsc DO, Guytonc KZ, Sonawanec B (2009) Genetic polymorphism in N-Acetyltransferase (NAT): population distribution of NAT1 and NAT2 activity. J Toxicol Environ Health B Crit Rev 12(5–6):440–472. doi:10.1080/10937400903158383

    Article  Google Scholar 

  • Wang W, Ballatori N (1998) Endogenous glutathione conjugates: occurrence and biological functions. Pharma Rev 50(3):335–355

    CAS  Google Scholar 

  • Zalko D, Perdu-Durand E, Debrauwer L, Bec-Ferte MP, Tulliez J (1998) Comparative metabolism of clenbuterol by rat and bovine liver microsomes and slices. Drug Metab Dispos 26(1):28–35

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We wish to thank Pr. Daniel Mansuy (UMR 8601, Paris Descartes University, France), Dr. Marcel Delaforge (URA 2096, CEA Saclay, Gif-sur-Yvette), Pr Van Luu-The (Oncology, Molecular Endocrinology and Genomic Research Center, Quebec University Hospital Research Center and Laval University, Quebec, CANADA) and Dr Bruno A. Bernard (L’Oréal Research and Innovation, France) for their advice and scientific assistance. We would also like to thank Oroxcell SA for its technical assistance in P450-dependent monooxygenase experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joan Eilstein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eilstein, J., Léreaux, G., Budimir, N. et al. Comparison of xenobiotic metabolizing enzyme activities in ex vivo human skin and reconstructed human skin models from SkinEthic. Arch Toxicol 88, 1681–1694 (2014). https://doi.org/10.1007/s00204-014-1218-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-014-1218-6

Keywords

Navigation