Skip to main content
Log in

The broccoli-born isothiocyanate sulforaphane impairs nucleotide excision repair: XPA as one potential target

  • Molecular Toxicology
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

The isothiocyanate sulforaphane (SFN), the major hydrolysis product of glucosinolates present in broccoli, has frequently been proposed to exert anticarcinogenic properties, mainly due to the induction of the nrf2/Keap1/ARE-signaling pathway. As potential underlying mechanism, a SFN-dependent zinc release from Keap1, the negative regulator of nrf2, has been described. This raises the question whether SFN is able to interfere with other zinc binding structures as well, for example those essential for DNA repair. Within this study, a SFN-induced deliberation of zinc from a synthesized peptide resembling the zinc binding domain of the xeroderma pigmentosum A (XPA) protein was observed starting at 50 μM SFN. Since XPA is absolutely required for nucleotide excision repair, the impact of SFN on the repair of (+)-anti-benzo[a]pyrene 7,8-diol-9,10-epoxide ((+)-anti-BPDE)-induced DNA adducts in HCT 116 cells was investigated. While preincubation with SFN did not affect initial lesion levels, a dose-dependent repair inhibition of (+)-anti-BPDE-induced DNA damage during the first 12 h after lesion induction was observed, starting at 1 μM SFN. In contrast, the later phase of DNA repair was not impaired by SFN. In support of an inactivation of XPA also in cells, SFN increased the (+)-anti-BPDE-induced cytotoxicity XPA dependently in XP12RO cells. Comparison of p53-proficient and p53-deficient cells revealed no difference in SFN-induced DNA repair inhibition, indicating that p53 is no cellular target of SFN. Since DNA repair processes are required to maintain DNA integrity, the presented data suggest a potential impairment of genomic stability by SFN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adimoolam S, Ford JM (2003) p53 and regulation of DNA damage recognition during nucleotide excision repair. DNA Repair 2(9):947–954

    Article  CAS  PubMed  Google Scholar 

  • Alexandrov K, Rojas M, Geneste O, Castegnaro M, Camus A-M, Petruzzelli S, Giuntini C, Bartsch H (1992) An improved fluorometric assay for dosimetry of Benzo[a]pyrene diol-epoxide-DNA adducts in smokers’ lung: comparisons with total bulky adducts and aryl hydrocarbon hydroxylase activity. Cancer Res 52:6248–6253

    CAS  PubMed  Google Scholar 

  • Asmuss M, Mullenders LHF, Eker A, Hartwig A (2000) Differential effects of toxic metal compounds on the activities of Fpg and XPA, two zinc finger proteins involved in DNA repair. Carcinogenesis 21(11):2097–2104

    Article  CAS  PubMed  Google Scholar 

  • Baasanjav-Gerber C, Hollnagel HM, Brauchmann J, Iori R, Glatt H (2011a) Detection of genotoxicants in Brassicales using endogenous DNA as a surrogate target and adducts determined by (32)P-postlabelling as an experimental end point. Mutagenesis 26(3):407–413

    Article  CAS  PubMed  Google Scholar 

  • Baasanjav-Gerber C, Monien BH, Mewis I, Schreiner M, Barillari J, Iori R, Glatt H (2011b) Identification of glucosinolate congeners able to form DNA adducts and to induce mutations upon activation by myrosinase. Mol Nutr Food Res 55(5):783–792

    Article  CAS  PubMed  Google Scholar 

  • Bacon JR, Williamson G, Garner RC, Lappin G, Langouet S, Bao Y (2003) Sulforaphane and quercetin modulate PhIP–DNA adduct formation in human HepG2 cells and hepatocytes. Carcinogenesis 24(12):1903–1911

    Article  CAS  PubMed  Google Scholar 

  • Bal W, Schwerdtle T, Hartwig A (2003) Mechanism of nickel assault on the zinc finger of DNA repair protein XPA. Chem Res Toxicol 16:242–248

    Article  CAS  PubMed  Google Scholar 

  • Bones AM, Rossiter JT (1996) The myrosinase–glucosinolate system, its organisation and biochemistry. Physiol Plant 97(1):194–208

    Article  CAS  Google Scholar 

  • Bunz F, Dutriaux A, Lengauer C, Waldman T, Zhou S, Brown JP, Sedivy JM, Kinzler KW, Vogelstein B (1998) Requirement for p53 and p21 to sustain G(2) arrest after DNA damage. Science 282(5393):1497–1501

    Article  CAS  PubMed  Google Scholar 

  • Chen RH, Maher VM, Brouwer J, Vandeputte P, McCormick JJ (1992) Preferential repair and strand-specific repair of Benzo[a]pyrene diol epoxide adducts in the HPRT gene of diploid human fibroblasts. Proc Natl Acad Sci USA 89(12):5413–5417

    Article  CAS  PubMed  Google Scholar 

  • Chung F-L, Conaway CC, Rao CV, Reddy BS (2000) Chemoprevention of colonic aberrant crypt foci in Fischer rats by sulforaphane and phenethyl isothiocyanate. Carcinogenesis 21(12):2287–2291

    Article  CAS  PubMed  Google Scholar 

  • Cleaver JE, Charles WC, McDowell ML, Sadinski WJ, Mitchell DL (1995) Overexpression of the XPA repair gene increases resistance to ultraviolet radiation in human cells by selective repair of DNA damage. Cancer Res 55(24):6152–6160

    CAS  PubMed  Google Scholar 

  • Conney AH, Chang RL, Jerina DM, Wei SJC (1994) Studies on the metabolism of benzo[a]pyrene and dose-dependent differences in the mutagenic profile of its ultimate carcinogenic metabolite. Drug Metab Rev 26(1–2):125–163

    Article  CAS  PubMed  Google Scholar 

  • Dinkova-Kostova AT, Holtzclaw WD, Wakabayashi N (2005) Keap 1, the sensor for electrophiles and oxidants that regulates the phase 2 response, is a zinc metalloprotein. Biochemistry 44:6889–6899

    Article  CAS  PubMed  Google Scholar 

  • Donauer J, Schreck I, Liebel U, Weiss C (2012) Role and interaction of p53, BAX and the stress-activated protein kinases p38 and JNK in benzo[a]pyrene-diolepoxide induced apoptosis in human colon carcinoma cells. Arch Toxicol 86(2):329–337

    Article  CAS  PubMed  Google Scholar 

  • Ettlinger MG, Lundeen AJ (1956) The structures of sinigrin and sinalbin; an enzymatic rearrangement. J Am Chem Soc 78(16):4172–4173

    Article  CAS  Google Scholar 

  • Ettlinger MG, Lundeen AJ (1957) First synthesis of a mustard oil glucosinolate; the enzymatic Lossen rearrangement. J Am Chem Soc 79(7):1764–1765

    Article  CAS  Google Scholar 

  • Evans E, Moggs JG, Hwang JR, Egly JM, Wood RD (1997) Mechanism of open complex and dual incision formation by human nucleotide excision repair factors. EMBO J 16(21):6559–6573

    Article  CAS  PubMed  Google Scholar 

  • Fahey JW, Zalcmann AT, Talalay P (2001) The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56(1):5–51

    Article  CAS  PubMed  Google Scholar 

  • Fiala JLA, Egner PA, Wiriyachan N, Ruchirawat M, Kensler KH, Wogan GN, Groopman JD, Croy RG, Essigmann JM (2011) Sulforaphane-mediated reduction of aflatoxin B-1-N-7-guanine in rat liver DNA: impacts of strain and sex. Toxicol Sci 121(1):57–62

    Article  CAS  PubMed  Google Scholar 

  • Fimognari C, Turrini E, Ferruzzi L, Lenzi M, Hrelia P (2012) Natural isothiocyanates: genotoxic potential versus chemoprevention. Mutat Res, Rev Mutat Res 750(2):107–131

    Article  CAS  Google Scholar 

  • Friedberg EC (2001) How nucleotide excision repair protects against cancer. Nat Rev Cancer 1(1):22–33

    Article  CAS  PubMed  Google Scholar 

  • Friedberg EC, Walker GC, Siede W, Wood RD, Schultz RA, Ellenberger T (2005) DNA repair and mutagenesis, 2nd edn. ASM Press, Washington, DC

    Google Scholar 

  • Gills JJ, Jeffery EH, Matusheski NV, Moon RC, Lantvit DD, Pezzuto JM (2006) Sulforaphane prevents mouse skin tumorigenesis during the stage of promotion. Cancer Lett 236(1):72–79

    Article  CAS  PubMed  Google Scholar 

  • Glatt H, Baasanjav-Gerber C, Schumacher F, Monien BH, Schreiner M, Frank H, Seidel A, Engst W (2011) 1-Methoxy-3-indolylmethyl glucosinolate; a potent genotoxicant in bacterial and mammalian cells: mechanisms of bioactivation. Chem Biol Interact 192(1–2):81–86

    Article  CAS  PubMed  Google Scholar 

  • Gunz D, Hess MT, Naegeli H (1996) Recognition of DNA adducts by human nucleotide excision repair—evidence for a thermodynamic probing mechanism. J Biol Chem 271(41):25089–25098

    Article  CAS  PubMed  Google Scholar 

  • Harris KE, Jeffery EH (2008) Sulforaphane and erucin increase MRP1 and MRP2 in human carcinoma cell lines. J Nutr Biochem 19(4):246–254

    Article  CAS  PubMed  Google Scholar 

  • Hartwig A (2013) Metal interaction with redox regulation: an integrating concept in metal carcinogenesis? Free Radic Biol Med 55:63–72

    Article  CAS  PubMed  Google Scholar 

  • Higdon JV, Delage B, Williams DE, Dashwood RH (2007) Cruciferous Vegetables and human cancer risk: epidemiologic evidence and mechanistic basis. Pharmacol Res 55(3):224–236

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hoeijmakers JHJ (2001) Genome maintenance mechanisms for preventing cancer. Nature 411(6835):366–374

    Article  CAS  PubMed  Google Scholar 

  • Hong F, Freeman ML, Liebler DC (2005) Identification of sensor cysteines in human Keap 1 modified by the cancer chemopreventive agent sulforaphane. Chem Res Toxicol 18:1917–1926

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa T, Zhang SSM, Qin XS, Takahashi Y, Oda H, Nakatsuru Y, Ide F (2004) DNA repair and cancer: lessons from mutant mouse models. Cancer Sci 95(2):112–117

    Article  CAS  PubMed  Google Scholar 

  • Jin CY, Moon DO, Lee JD, Heo MS, Choi YH, Lee CM, Park YM, Kim GY (2007) Sulforaphane sensitizes tumor necrosis factor-related apoptosis-inducing ligand-mediated apoptosis through downregulation of ERK and Akt in lung adenocarcinoma A549 cells. Carcinogenesis 28(5):1058–1066

    Article  CAS  PubMed  Google Scholar 

  • Jones CJ, Wood RD (1993) Preferential binding of the xeroderma pigmentosum group-A complementing protein to damaged DNA. Biochemistry 32(45):12096–12104

    Article  CAS  PubMed  Google Scholar 

  • Kantor GJ, Hull DR (1984) The rate of removal of pyrimidine dimers in quiescent cultures of normal human and xeroderma pigmentosum-cells. Mutat Res 132(1–2):21–31

    CAS  PubMed  Google Scholar 

  • Kassahun K, Davis M, Hu P, Martin B, Baillie T (1997) Biotransformation of the naturally occurring isothiocyanate sulforaphane in the rat: identification of phase I metabolites and glutathione conjugates. Chem Res Toxicol 10(11):1228–1233

    Article  CAS  PubMed  Google Scholar 

  • Kim H, Kim EH, Eom YW, Kim WH, Kwon TK, Lee SJ, Choi KS (2006) Sulforaphane sensitizes tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-resistant hepatoma cells to TRAIL-induced apoptosis through reactive oxygen species-mediated up-regulation of DR5. Cancer Res 66(3):1740–1750

    Article  CAS  PubMed  Google Scholar 

  • Köberle B, Roginskaya V, Wood RD (2006) XPA protein as a limiting factor for nucleotide excision repair and UV sensitivity in human cells. DNA Repair 5(5):641–648

    Article  PubMed  Google Scholar 

  • Lai RH, Miller MJ, Jeffery E (2010) Glucoraphanin hydrolysis by microbiota in the rat cecum results in sulforaphane absorption. Food Funct 1(2):161–166

    Article  CAS  PubMed  Google Scholar 

  • Lau A, Villeneuve NF, Sun Z, Wong PK, Zhang DD (2008) Dual roles of Nrf2 in cancer. Pharmacol Res 58:262–270

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee J-S, Surh Y-J (2005) Nrf2 as a novel molecular target for chemoprevention. Cancer Lett 224:171–184

    Article  CAS  PubMed  Google Scholar 

  • Levine AJ (2009) The common mechanisms of transformation by the small DNA tumor viruses: the inactivation of tumor suppressor gene products: p53. Virology 384(2):285–293

    Article  CAS  PubMed  Google Scholar 

  • McDowell ML, Nguyen T, Cleaver JE (1993) A single-site mutation in the XPAC gene alters photoproduct recognition. Mutagenesis 8(2):155–161

    Article  CAS  PubMed  Google Scholar 

  • McWalter GK, Higgins LG, McLellan LI, Henderson CJ, Song L, Thornalley PJ, Itoh K, Yamamoto M, Hayes JD (2004) Transcription factor Nrf2 is essential for induction of NAD(P)H:quinone oxidoreductase 1, glutathione S-transferases, and glutamate cysteine ligase by broccoli seeds and isothiocyanates. J Nutr 134:3499S–3506S

    CAS  PubMed  Google Scholar 

  • Mellon I, Hock T, Reid R, Porter PC, States JC (2002) Polymorphisms in the human xeroderma pigmentosum group A gene and their impact on cell survival and nucleotide excision repair. DNA Repair 1(7):531–546

    Article  CAS  PubMed  Google Scholar 

  • Missura M, Buterin T, Hindges R, Hubscher U, Kasparkova J, Brabec V, Naegeli H (2001) Double-check probing of DNA bending and unwinding by XPA–RPA: an architectural function in DNA repair. EMBO J 20(13):3554–3564

    Article  CAS  PubMed  Google Scholar 

  • Miyamoto I, Miura N, Niwa H, Miyazaki J, Tanaka K (1992) Mutational analysis of the structure and function of the xeroderma-pigmentosum group-a complementing protein—identification of essential domains for nuclear-localization and DNA excision repair. J Biol Chem 267(17):12182–12187

    CAS  PubMed  Google Scholar 

  • Morita EH, Ohkubo T, Kuraoka I, Shirakawa M, Tanaka K, Morikawa K (1996) Implications of the zinc-finger motif found in the DNA-binding domain of the human XPA protein. Genes Cells 1(5):437–442

    Article  CAS  PubMed  Google Scholar 

  • Mu D, Wakasugi M, Hsu DS, Sancar A (1997) Characterization of reaction intermediates of human excision repair nuclease. J Biol Chem 272(46):28971–28979

    Article  CAS  PubMed  Google Scholar 

  • Myzak M, Dashwood RH (2006) Chemoprotection by sulforaphane: keep one eye beyond Keap 1. Cancer Lett 233:208–218

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Porter PC, Mellon I, States JC (2005) XP-A cells complemented with Arg228Gln and Val234Leu polymorphic XPA alleles repair BPDE-induced DNA damage better than cells complemented with the wild type allele. DNA Repair 4(3):341–349

    Article  CAS  PubMed  Google Scholar 

  • Rojas M, Alexandrov K, Schooten F-J, Hillebrand M, Kriek E, Bartsch H (1994) Validation of a new fluorometric assay for benzo[a]pyrene diolepoxide-DNA adducts in human white blood cells: comparisons with 32P-postlabeling and ELISA. Carcinogenesis 15(3):557–560

    Article  CAS  PubMed  Google Scholar 

  • Saha S, Hollands W, Teucher B, Needs PW, Narbad A, Ortori CA, Barrett DA, Rossiter JT, Mithen RF, Kroon PA (2012) Isothiocyanate concentrations and interconversion of sulforaphane to erucin in human subjects after consumption of commercial frozen broccoli compared to fresh broccoli. Mol Nutr Food Res 56(12):1906–1916

    Article  CAS  PubMed  Google Scholar 

  • Schwerdtle T, Seidel A, Hartwig A (2002) Effect of soluble and particulate nickel compounds on the formation and repair of stable benzo[a]pyrene DNA adducts in human lung cells. Carcinogenesis 23(1):47–53

    Article  CAS  PubMed  Google Scholar 

  • Schwerdtle T, Walter I, Hartwig A (2003) Arsenite and its biomethylated metabolites interfere with the formation and repair of stable BPDE-induced DNA adducts in human cells and impair XPAzf and Fpg. DNA Repair 2:1449–1463

    Article  CAS  PubMed  Google Scholar 

  • Singletary K, MacDonald C (2000) Inhibition of benzo[a]pyrene- and 1,6-dinitropyrene-DNA adduct formation in human mammary epithelial cells by dibenzoylmethane and sulforaphane. Cancer Lett 155(1):47–54

    Article  CAS  PubMed  Google Scholar 

  • Smith ML, Ford JM, Hollander MC, Bortnick RA, Amundson SA, Seo YR, Deng CX, Hanawalt PC, Fornace AJ (2000) p53-mediated DNA repair responses to UV radiation: studies of mouse cells lacking p53, p21, and/or gadd45 genes. Mol Cell Biol 20(10):3705–3714

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tanaka K, Miura N, Satokata I, Miyamoto I, Yoshida MC, Satoh Y, Kondo S, Yasui A, Okayama H, Okada Y (1990) Analysis of a human DNA excision repair gene involved in group-A xeroderma-pigmentosum and containing a zinc-finger domain. Nature 348(6296):73–76

    Article  CAS  PubMed  Google Scholar 

  • Temviriyanukul P, Meijers M, van Hees-Stuivenberg S, Boei J, Delbos F, Ohmori H, de Wind N, Jansen JG (2012) Different sets of translesion synthesis DNA polymerases protect from genome instability induced by distinct food-derived genotoxins. Toxicol Sci 127(1):130–138

    Article  CAS  PubMed  Google Scholar 

  • Traka M, Mithen R (2009) Glucosinolates, isothiocyanates and human health. Phytochem Rev 8(1):269–282

    Article  CAS  Google Scholar 

  • Verhoeven DTH, Goldbohm RA, van Poppel G, Verhagen H, van den Brandt P (1996) Epidemiological Studies on brassica vegetables and cancer risk. Cancer Epidemiol Biomarkers Prev 5:733–748

    CAS  PubMed  Google Scholar 

  • Wani MA, Zhu QZ, El-Mahdy M, Venkatachalam S, Wani AA (2000) Enhanced sensitivity to anti-benzo(a)pyrene-diol-epoxide DNA damage correlates with decreased global genomic repair attributable to abrogated p53 function in human cells. Cancer Res 60(8):2273–2280

    CAS  PubMed  Google Scholar 

  • Wani MA, El-Mahdy MA, Hamada FM, Wani G, Zhu QH, Wang QE, Wani AA (2002) Efficient repair of bulky anti-BPDE DNA adducts from non-transcribed DNA strand requires functional p53 but not p21(waf1)/(cip1) and pRb. Mutat Res, Fundam Mol Mech Mutagen 505(1–2):13–25

    Article  CAS  Google Scholar 

  • Xiao D, Powolny AA, Antosiewicz J, Hahm ER, Bommareddy A, Zeng Y, Desai D, Amin S, Herman-Antosiewicz A, Singh SV (2009) Cellular responses to cancer chemopreventive agent D,L-sulforaphane in human prostate cancer cells are initiated by mitochondrial reactive oxygen species. Pharm Res 26(7):1729–1738

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang YS (2000) Role of glutathione in the accumulation of anticarcinogenic isothiocyanates and their glutathione conjugates by murine hepatoma cells. Carcinogenesis 21(6):1175–1182

    Article  CAS  PubMed  Google Scholar 

  • Zhang YS, Callaway EC (2002) High cellular accumulation of sulphoraphane, a dietary anticarcinogen, is followed by rapid transporter-mediated export as a glutathione conjugate. Biochem J 364:301–307

    CAS  PubMed  Google Scholar 

  • Zhang YS, Talalay P (1998) Mechanism of differential potencies of isothiocyanates as inducers of anticarcinogenic phase 2 enzymes. Cancer Res 58(20):4632–4639

    CAS  PubMed  Google Scholar 

  • Zhang Y, Kensler TW, Cho C-G, Posner GH, Talalay P (1994) Anticarcinogenic activities of sulforaphane and structurally related synthetic norbornyl isothiocyanates. Proc Natl Acad Sci USA 91:3147–3150

    Article  CAS  PubMed  Google Scholar 

  • Zhang YS, Kolm RH, Mannervik B, Talalay P (1995) Reversible conjugation of isothiocyanates with glutathione catalyzed by human glutathione transferases. Biochem Bioph Res Co 206(2):748–755

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Gilbert Schönfelder (Charité, Universitätsmedizin, Berlin, Germany) and Dr. Bert Vogelstein (John Hopkins University, Baltimore, USA) for the kind gift of the HCT 116 cell lines. We further would like to thank Dr. James Cleaver (UCSF, San Francisco, USA) for kindly providing the XP12RO cell line. Moreover, we thank Dr. Albrecht Seidel (Prof. Dr. G. Grimmer-Stiftung, Großhansdorf, Germany) for synthesizing (+)-anti-BPDE. This work was financed by the Bundesministerium für Bildung und Forschung (BMBF), Grant No. 0315370B, coordinated by Dr. Monika Schreiner (IGZ, Großbeeren, Germany).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Hartwig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Piberger, A.L., Köberle, B. & Hartwig, A. The broccoli-born isothiocyanate sulforaphane impairs nucleotide excision repair: XPA as one potential target. Arch Toxicol 88, 647–658 (2014). https://doi.org/10.1007/s00204-013-1178-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-013-1178-2

Keywords

Navigation