Skip to main content
Log in

Hepatic 3D cultures but not 2D cultures preserve specific transporter activity for acetaminophen-induced hepatotoxicity

  • In vitro systems
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Primary human hepatocytes (PHH) are the “gold standard” for in vitro toxicity tests. However, 2D PHH cultures have limitations that are due to a time-dependent dedifferentiation process visible by morphological changes closely connected to a decline of albumin production and CYP450 activity. The 3D in vitro culture corresponds to in vivo-like tissue architecture, which preserves functional characteristics of hepatocytes, and therefore can at least partially overcome the restrictions of 2D cultures. Consequently, several drug toxicities observed in vivo cannot be reproduced in 2D in vitro models, for example, the toxic effects of acetaminophen. The objective of this study was to identify molecular differences between 2D and 3D cultivation which explain the observed toxicity response. Our data demonstrated an increase in cell death after treatment with acetaminophen in 3D, but not in 2D cultures. Additionally, an acetaminophen concentration-dependent increase in the CYP2E1 expression level in 3D cultures was detected. However, during the treatment with 10 mM acetaminophen, the expression level of SOD gradually decreased in 3D cultures and was undetectable after 24 h. In line with these findings, we observed higher import/export rates in the membrane transport protein, multidrug resistance-associated protein-1, which is known to be specific for acetaminophen transport. The presented data demonstrate that PHH cultured in 3D preserve certain metabolic functions. Therefore, they have closer resemblance to the in vivo situation than PHH in 2D cultures. In consequence, 3D cultures will allow for a more accurate hepatotoxicity prediction in in vitro models in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agarwal R, MacMillan-Crow LA et al (2011) Acetaminophen-induced hepatotoxicity in mice occurs with inhibition of activity and nitration of mitochondrial manganese superoxide dismutase. J Pharmacol Exp Ther 337(1):110–116

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Aleksunes LM, Augustine LM et al (2007) Influence of acetaminophen vehicle on regulation of transporter gene expression during hepatotoxicity. J Toxicol Environ Health A 70(21):1870–1872

    Article  CAS  PubMed  Google Scholar 

  • Arndt K, Haschek WM et al (1989) Mechanism of dimethylsufoxide protection against acetaminophen hepatotoxicity. Drug Metab Rev 20:261–269

    Article  CAS  PubMed  Google Scholar 

  • Bruschi SA (2004) Methods and approaches to study metabolism and toxicity of acetaminophen. In: Drug metabolism and transport. Totowa, NJ, pp 197–232

  • Cole SP, Deeley RG (2006) Transport of gluthathione and gluthathione conjugates by MRP1. Trends Pharmacol Sci 27(8):438–446

    Google Scholar 

  • Decaens C, Durand M et al (2008) Which in vitro models could be best used to study hepatocyte polarity? Biol Cell 100(7):387–398

    Article  CAS  PubMed  Google Scholar 

  • Eckl PM, Bresgen N (2003) The cultured primary hepatocyte and its application in toxicology. J Appl Biomed 1:117–126

    CAS  Google Scholar 

  • Espinosa Bosch M, Ruiz Sanchez AJ et al (2006) Determination of paracetamol: historical evolution. J Pharm Biomed Anal 42(3):291–321

    Article  CAS  PubMed  Google Scholar 

  • Fontana RJ (2008) Acute liver failure including acetaminophen overdose. Med Clin North Am 92(4):761–794, viii

    Google Scholar 

  • Forster S, Thumser AE et al (2012) Characterization of rhodamine-123 as a tracer dye for use in in vitro drug transport assays. PLoS One 7(3):e33253

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Glavinas H, Krajcsi P et al (2004) The role of ABC transporters in drug resistance, metabolism and toxicity. Curr Drug Deliv 1(1):27–42

    Article  CAS  PubMed  Google Scholar 

  • Godoy P, Hengstler JG et al (2009) Extracellular matrix modulates sensitivity of hepatocytes to fibroblastoid dedifferentiation and transforming growth factor beta-induced apoptosis. Hepatology 49(6):2031–2043

    Article  CAS  PubMed  Google Scholar 

  • Gomez-Lechon MJ, Castell JV et al (2008) An update on metabolism studies using human hepatocytes in primary culture. Expert Opin Drug Metab Toxicol 4(7):837–854

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez FJ (2005) Role of cytochromes P450 in chemical toxicity and oxidative stress: studies with CYP2E1. Mutat Res 569(1–2):101–110

    Article  CAS  PubMed  Google Scholar 

  • Hewitt NJ, Lechon MJ et al (2007) Primary hepatocytes: current understanding of the regulation of metabolic enzymes and transporter proteins, and pharmaceutical practice for the use of hepatocytes in metabolism, enzyme induction, transporter, clearance, and hepatotoxicity studies. Drug Metab Rev 39(1):159–234

    Article  CAS  PubMed  Google Scholar 

  • Hinson JA, Roberts DW, et al. (2010) Mechanisms of acetaminophen-induced liver necrosis. Handb Exp Pharmacol(196):369–405

  • Hirano M, Maeda K et al (2005) Bile salt export pump (BSEP/ABCB11) can transport a nonbile acid substrate, pravastatin. J Pharmacol Exp Ther 314:876–882

    Article  CAS  PubMed  Google Scholar 

  • Jemmitz K, Veres Z et al (2010) Contribution of high basolateral bile salt efflux to the lack of hepatotoxicity in rat in response to drugs inducing cholestasis in human. Toxicol Sci 115(1):80–88

    Article  Google Scholar 

  • Kock K, Brouwer KL (2012) A perspective on efflux transport proteins in the liver. Clin Pharmacol Ther 92(5):599–612

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kullak-Ublick GA, Stieger B et al (2000) Hepatic transport of bile salts. Semin Liver Dis 20(3):273–292

    Article  CAS  PubMed  Google Scholar 

  • Larson AM, Polson J et al (2005) Acetaminophen-induced acute liver failure: results of a United States multicenter, prospective study. Hepatology 42(6):1364–1372

    Article  CAS  PubMed  Google Scholar 

  • Laupeze B, Amiot L et al (2001) Multidrug resistance protein (MRP) activity in normal mature leukocytes and CD34-positive hematopoietic cells from peripheral blood. Life Sci 68(11):1323–1331

    Article  CAS  PubMed  Google Scholar 

  • Leslie EM, Deeley RG et al (2001) Toxicological relevance of the multidrug resistance protein 1, MRP1 (ABCC1) and related transporters. Toxicology 167(1):3–23

    Article  CAS  PubMed  Google Scholar 

  • Li FC, Liu Y et al (2009) In vivo dynamic metabolic imaging of obstructive cholestasis in mice. Am J Physiol Gastrointest Liver Physiol 296(5):G1091–G1097

    Article  CAS  PubMed  Google Scholar 

  • Li J, Wei DQ et al (2012) Molecular dynamics simulations of CYP2E1. Med Chem 8(2):208–221

    CAS  PubMed  Google Scholar 

  • Lin J, Schyschka L et al (2012) Comparative analysis of phase I and II enzyme activities in 5 hepatic cell lines identifies Huh-7 and HCC-T cells with the highest potential to study drug metabolism. Arch Toxicol 86(1):87–95

    Article  CAS  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ et al (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275

    CAS  PubMed  Google Scholar 

  • Madsen KG, Olsen J et al (2007) Development and evaluation of an electrochemical method for studying reactive phase-I metabolites: correlation to in vitro drug metabolism. Chem Res Toxicol 20(5):821–831

    Article  CAS  PubMed  Google Scholar 

  • Nussler AK, Nussler NC et al (2009) The Holy grail of hepatocyte culturing and therapeutic use. In: Santin M (ed) Strategies in regenerative medicine. Springer International, Germany

    Google Scholar 

  • Prot JM, Briffaut AS et al (2011) Integrated proteomic and transcriptomic investigation of the acetaminophen toxicity in liver microfluidic biochip. PLoS One 6(8):e21268

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ramachandran A, Lebofsky M et al (2011) The impact of partial manganese superoxide dismutase (SOD2)-deficiency on mitochondrial oxidant stress, DNA fragmentation and liver injury during acetaminophen hepatotoxicity. Toxicol Appl Pharmacol 251(3):226–233

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Roelofsen H, Hooiveld GJ et al (1999) Glutathione S-conjugate transport in hepatocytes entering the cell cycle is preserved by a switch in expression from the apical MRP2 to the basolateral MRP1 transporting protein. J Cell Sci 112(Pt 9):1395–1404

    CAS  PubMed  Google Scholar 

  • Rost D, Kartenbeck J et al (1999) Changes in the localization of the rat canalicular conjugate export pump Mrp2 in phalloidin-induced cholestasis. Hepatology 29(3):814–821

    Article  CAS  PubMed  Google Scholar 

  • Schutte M, Fox B et al (2011) Rat primary hepatocytes show enhanced performance and sensitivity to acetaminophen during three-dimensional culture on a polystyrene scaffold designed for routine use. Assay Drug Dev Technol 9(5):475–486

    Article  CAS  PubMed  Google Scholar 

  • Suzuki N, Higuchi T et al (2002) Multiple active intermediates in oxidation reaction catalyzed by synthetic heme-thiolate complex relevant to cytochrome p450. J Am Chem Soc 124(32):9622–9628

    Article  CAS  PubMed  Google Scholar 

  • Ullrich A, Berg C et al (2006) Use of a novel; standardized and validated human hepatocyte culture system for repetitive analyses of drugs: repeated administrations of acetaminophen reduces albumin and urea secretion. Faseb Journal 20(4):A630–A630

    Google Scholar 

  • Yamaura K, Shimada M et al (2011) Protective effects of goldenseal (Hydrastis canadensis L.) on acetaminophen-induced hepatotoxicity through inhibition of CYP2E1 in rats. Pharmacognosy Res 3(4):250–255

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zaher H, Buters JT et al (1998) Protection against acetaminophen toxicity in CYP1A2 and CYP2E1 double-null mice. Toxicol Appl Pharmacol 152(1):193–199

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Federal Ministry of Research project “EmbryoTox” (BMBF 0315208E) and by the SET Foundation. We would like to thank Luc Koster for his help with the editing of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Nussler.

Additional information

L. Schyschka, J. J. Martínez Sánchez, G. Damm and A. K. Nussler have equally contributed to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schyschka, L., Sánchez, J.J.M., Wang, Z. et al. Hepatic 3D cultures but not 2D cultures preserve specific transporter activity for acetaminophen-induced hepatotoxicity. Arch Toxicol 87, 1581–1593 (2013). https://doi.org/10.1007/s00204-013-1080-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-013-1080-y

Keywords

Navigation