Skip to main content
Log in

Benzo[a]pyrene-induced transcriptomic responses in primary hepatocytes and in vivo liver: Toxicokinetics is essential for in vivo–in vitro comparisons

  • In vitro systems
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

The traditional 2-year cancer bioassay needs replacement by more cost-effective and predictive tests. The use of toxicogenomics in an in vitro system may provide a more high-throughput method to investigate early alterations induced by carcinogens. Recently, the differential gene expression response in wild-type and cancer-prone Xpa −/− p53 +/− primary mouse hepatocytes after exposure to benzo[a]pyrene (B[a]P) revealed downregulation of cancer-related pathways in Xpa −/− p53 +/− hepatocytes only. Here, we investigated pathway regulation upon in vivo B[a]P exposure of wild-type and Xpa −/− p53 +/− mice. In vivo transcriptomics analysis revealed a limited gene expression response in mouse livers, but with a significant induction of DNA replication and apoptotic/anti-apoptotic cellular responses in Xpa −/− p53 +/− livers only. In order to be able to make a meaningful in vivo–in vitro comparison we estimated internal in vivo B[a]P concentrations using DNA adduct levels and physiologically based kinetic modeling. Based on these results, the in vitro concentration that corresponded best with the internal in vivo dose was chosen. Comparison of in vivo and in vitro data demonstrated similarities in transcriptomics response: xenobiotic metabolism, lipid metabolism and oxidative stress. However, we were unable to detect cancer-related pathways in either wild-type or Xpa −/− p53 +/− exposed livers, which were previously found to be induced by B[a]P in Xpa −/− p53 +/− primary hepatocytes. In conclusion, we showed parallels in gene expression responses between livers and primary hepatocytes upon exposure to equivalent concentrations of B[a]P. Furthermore, we recommend considering toxicokinetics when modeling a complex in vivo endpoint with in vitro models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

B[a]P:

Benzo[a]pyrene

BPDE:

Benzo[a]pyrene-7,8-diol-9,10-epoxide

GI:

Gastrointestinal

FDR:

False discovery rate

GenMAPP:

Gene Map Annotator and Pathway Profiler

GO:

Gene Ontology

KEGG:

Kyoto Encyclopedia of Genes and Genomes

PBK:

Physiologically based kinetic

PCA:

Principal component analysis

WT:

Wild-type

Xpa:

Xeroderma pigmentosum A

Xpa/p53 :

Xpa −/− p53 +/−

References

  • Adler S, Basketter D, Creton S, Pelkonen O, van Benthem J, Zuang V, Andersen KE, Angers-Loustau A, Aptula A, Bal-Price A, Benfenati E, Bernauer U, Bessems J, Bois FY, Boobis A, Brandon E, Bremer S, Broschard T, Casati S, Coecke S, Corvi R, Cronin M, Daston G, Dekant W, Felter S, Grignard E, Gundert-Remy U, Heinonen T, Kimber I, Kleinjans J, Komulainen H, Kreiling R, Kreysa J, Leite SB, Loizou G, Maxwell G, Mazzatorta P, Munn S, Pfuhler S, Phrakonkham P, Piersma A, Poth A, Prieto P, Repetto G, Rogiers V, Schoeters G, Schwarz M, Serafimova R, Tähti H, Testai E, van Delft J, van Loveren H, Vinken M, Worth A, Zaldivar JM (2011) Alternative (non-animal) methods for cosmetics testing: current status and future prospects—2010. Arch Toxicol 85 (5):367–485

    Google Scholar 

  • Ames BN, Gold LS (1990) Too many rodent carcinogens: mitogenesis increases mutagenesis. Science 249(4972):970–971

    Article  PubMed  CAS  Google Scholar 

  • Arentson E, Faloon P, Seo J, Moon E, Studts JM, Fremont DH, Choi K (2002) Oncogenic potential of the DNA replication licensing protein CDT1. Oncogene 21(8):1150–1158

    Article  PubMed  CAS  Google Scholar 

  • Auerbach SS, Shah RR, Mav D, Smith CS, Walker NJ, Vallant MK, Boorman GA, Irwin RD (2010) Predicting the hepatocarcinogenic potential of alkenylbenzene flavoring agents using toxicogenomics and machine learning. Toxicol Appl Pharmacol 243(3):300–314

    Article  PubMed  CAS  Google Scholar 

  • Bartosiewicz M, Penn S, Buckpitt A (2001) Applications of gene arrays in environmental toxicology: fingerprints of gene regulation associated with cadmium chloride, benzo(a)pyrene, and trichloroethylene. Environ Health Perspect 109(1):71–74

    Article  PubMed  CAS  Google Scholar 

  • Benigni R (2012) Alternatives to the carcinogenicity bioassay for toxicity prediction: are we there yet? Expert Opin Drug Metab Toxicol 8(4):407–417

    Article  PubMed  CAS  Google Scholar 

  • Blaauboer BJ (2010) Biokinetic modeling and in vitro-in vivo extrapolations. J Toxicol Environ Health B Crit Rev 13(2–4):242–252

    PubMed  CAS  Google Scholar 

  • Blow JJ, Tada S (2000) Cell cycle. A new check on issuing the licence. Nature 404(6778):560–561

    Article  PubMed  CAS  Google Scholar 

  • Boorsma A, Foat BC, Vis D, Klis F, Bussemaker HJ (2005) T-Profiler: scoring the activity of predefined groups of genes using gene expression data. Nucleic Acids Res 33(Web Server issue):W592–W595

    Article  PubMed  CAS  Google Scholar 

  • Brown RP, Delp MD, Lindstedt SL, Rhomberg LR, Beliles RP (1997) Physiological parameter values for physiologically based pharmacokinetic models. Toxicol Ind Health 13(4):407–484

    PubMed  CAS  Google Scholar 

  • Clewell H Jr, Gentry PR, Covington TR, Gearhart JM (2000) Development of a physiologically based pharmacokinetic model of trichloroethylene and its metabolites for use in risk assessment. Environ Health Perspect 108(Suppl 2):283–305

    Article  PubMed  CAS  Google Scholar 

  • Crowell SR, Amin SG, Anderson KA, Krishnegowda G, Sharma AK, Soelberg JJ, Williams DE, Corley RA (2011) Preliminary physiologically based pharmacokinetic models for benzo[a]pyrene and dibenzo[def, p]chrysene in rodents. Toxicol Appl Pharmacol 257(3):365–376

    Article  PubMed  CAS  Google Scholar 

  • Dai M, Wang P, Boyd AD, Kostov G, Athey B, Jones EG, Bunney WE, Myers RM, Speed TP, Akil H, Watson SJ, Meng F (2005) Evolving gene/transcript definitions significantly alter the interpretation of GeneChip data. Nucleic Acids Res 33(20):e175

    Article  PubMed  Google Scholar 

  • de Leeuw WC, Rauwerda H, Jonker MJ, Breit TM (2008) Salvaging Affymetrix probes after probe-level re-annotation. BMC Res Notes 1:66

    Article  PubMed  Google Scholar 

  • de Vries A, van Oostrom CT, Hofhuis FM, Dortant PM, Berg RJ, de Gruijl FR, Wester PW, van Kreijl CF, Capel PJ, van Steeg H (1995) Increased susceptibility to ultraviolet-B and carcinogens of mice lacking the DNA excision repair gene XPA. Nature 377(6545):169–173

    Article  PubMed  Google Scholar 

  • de Vries A, van Oostrom CT, Dortant PM, Beems RB, van Kreijl CF, Capel PJ, van Steeg H (1997) Spontaneous liver tumors and benzo[a]pyrene-induced lymphomas in XPA -deficient mice. Mol Carcinog 19(1):46–53

    Article  PubMed  Google Scholar 

  • Ellinger-Ziegelbauer H, Gmuender H, Bandenburg A, Ahr HJ (2008) Prediction of a carcinogenic potential of rat hepatocarcinogens using toxicogenomics analysis of short-term in vivo studies. Mutat Res 637(1–2):23–39

    PubMed  CAS  Google Scholar 

  • Fassett JT, Tobolt D, Nelsen CJ, Albrecht JH, Hansen LK (2003) The role of collagen structure in mitogen stimulation of ERK, cyclin D1 expression, and G1-S progression in rat hepatocytes. J Biol Chem 278(34):31691–31700

    Article  PubMed  CAS  Google Scholar 

  • Fielden MR, Nie A, McMillian M, Elangbam CS, Trela BA, Yang Y, Dunn RT, Dragan Y, Fransson-Stehen R, Bogdanffy M, Adams SP, Foster WR, Chen SJ, Rossi P, Kasper P, Jacobson-Kram D, Tatsuoka KS, Wier PJ, Gollub J, Halbert DN, Roter A, Young JK, Sina JF, Marlowe J, Martus HJ, Aubrecht J, Olaharski AJ, Roome N, Nioi P, Pardo I, Snyder R, Perry R, Lord P, Mattes W, Car BD (2008) Interlaboratory evaluation of genomic signatures for predicting carcinogenicity in the rat. Toxicol Sci 103(1):28–34

    Article  PubMed  CAS  Google Scholar 

  • Flowers L, Ohnishi ST, Penning TM (1997) DNA strand scission by polycyclic aromatic hydrocarbon o-quinones: role of reactive oxygen species, Cu(II)/Cu(I) redox cycling, and o-semiquinone anion radicals. Biochemistry 36(28):8640–8648

    Article  PubMed  CAS  Google Scholar 

  • Foth H, Kahl R, Kahl GF (1988) Pharmacokinetics of low doses of benzo[a]pyrene in the rat. Food Chem Toxicol 26(1):45–51

    Article  PubMed  CAS  Google Scholar 

  • Gelboin HV (1980) Benzo[alpha]pyrene metabolism, activation and carcinogenesis: role and regulation of mixed-function oxidases and related enzymes. Physiol Rev 60(4):1107–1166

    PubMed  CAS  Google Scholar 

  • Godschalk RW, Maas LM, Van Zandwijk N, van ‘t Veer LJ, Breedijk A, Borm PJ, Verhaert J, Kleinjans JC, van Schooten FJ (1998) Differences in aromatic-DNA adduct levels between alveolar macrophages and subpopulations of white blood cells from smokers. Carcinogenesis 19(5):819–825

    Article  PubMed  CAS  Google Scholar 

  • Hamouchene H, Arlt VM, Giddings I, Phillips DH (2011) Influence of cell cycle on responses of MCF-7 cells to benzo[a]pyrene. BMC Genomics 12:333

    Article  PubMed  CAS  Google Scholar 

  • Hansen LK, Wilhelm J, Fassett JT (2006) Regulation of hepatocyte cell cycle progression and differentiation by type I collagen structure. Curr Top Dev Biol 72:205–236

    Article  PubMed  CAS  Google Scholar 

  • Hecht SS, Grabowski W, Groth K (1979) Analysis of faeces for benzo[a]pyrene after consumption of charcoal-broiled beef by rats and humans. Food Cosmet Toxicol 17(3):223–227

    Article  PubMed  CAS  Google Scholar 

  • Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4(2):249–264

    Article  PubMed  Google Scholar 

  • Jacks T, Remington L, Williams BO, Schmitt EM, Halachmi S, Bronson RT, Weinberg RA (1994) Tumor spectrum analysis in p53-mutant mice. Curr Biol 4(1):1–7

    Article  PubMed  CAS  Google Scholar 

  • Jacobson-Kram D, Sistare FD, Jacobs AC (2004) Use of transgenic mice in carcinogenicity hazard assessment. Toxicol Pathol 32(Suppl 1):49–52

    Article  PubMed  CAS  Google Scholar 

  • Klaassen R, Olling M, Lusthof KJ (1996) The influence of the use of animal cages with wire floor or macrolon cages with middle size saw on the kinetics of benzo(a)pyrene in the rat. RIVM Report 658603 006

  • Malik AI, Williams A, Lemieux CL, White PA, Yauk CL (2012) Hepatic mRNA, microRNA, and miR-34a-target responses in mice after 28 days exposure to doses of benzo(a)pyrene that elicit DNA damage and mutation. Environ Mol Mutagen 53(1):10–21

    Article  PubMed  CAS  Google Scholar 

  • Mielke H, Anger LT, Schug M, Hengstler JG, Stahlmann R, Gundert-Remy U (2011) A physiologically based toxicokinetic modelling approach to predict relevant concentrations for in vitro testing. Arch Toxicol 85(6):555–563

    Article  PubMed  CAS  Google Scholar 

  • Nishitani H, Lygerou Z, Nishimoto T, Nurse P (2000) The Cdt1 protein is required to license DNA for replication in fission yeast. Nature 404(6778):625–628

    Article  PubMed  CAS  Google Scholar 

  • Park HJ, Oh JH, Park SM, Cho JW, Yum YN, Park SN, Yoon DY, Yoon S (2011) Identification of biomarkers of chemically induced hepatocarcinogenesis in rasH2 mice by toxicogenomic analysis. Arch Toxicol 85(12):1627–1640

    Article  PubMed  CAS  Google Scholar 

  • Pery AR, Brochot C, Desmots S, Boize M, Sparfel L, Fardel O (2011) Predicting in vivo gene expression in macrophages after exposure to benzo(a)pyrene based on in vitro assays and toxicokinetic/toxicodynamic models. Toxicol Lett 201(1):8–14

    Article  PubMed  CAS  Google Scholar 

  • Pritchard JB, French JE, Davis BJ, Haseman JK (2003) The role of transgenic mouse models in carcinogen identification. Environ Health Perspect 111(4):444–454

    Article  PubMed  CAS  Google Scholar 

  • Ramesh A, Inyang F, Hood DB, Archibong AE, Knuckles ME, Nyanda AM (2001) Metabolism, bioavailability, and toxicokinetics of benzo(alpha)pyrene in F-344 rats following oral administration. Exp Toxicol Pathol 53(4):275–290

    Article  PubMed  CAS  Google Scholar 

  • Reddy MV, Randerath K (1986) Nuclease P1-mediated enhancement of sensitivity of 32P-postlabeling test for structurally diverse DNA adducts. Carcinogenesis 7(9):1543–1551

    Article  PubMed  CAS  Google Scholar 

  • Rohrbeck A, Salinas G, Maaser K, Linge J, Salovaara S, Corvi R, Borlak J (2010) Toxicogenomics applied to in vitro carcinogenicity testing with Balb/c 3T3 cells revealed a gene signature predictive of chemical carcinogens. Toxicol Sci 118(1):31–41

    Article  PubMed  CAS  Google Scholar 

  • Seo J, Chung YS, Sharma GG, Moon E, Burack WR, Pandita TK, Choi K (2005) Cdt1 transgenic mice develop lymphoblastic lymphoma in the absence of p53. Oncogene 24(55):8176–8186

    PubMed  CAS  Google Scholar 

  • Tada S, Li A, Maiorano D, Mechali M, Blow JJ (2001) Repression of origin assembly in metaphase depends on inhibition of RLF-B/Cdt1 by geminin. Nat Cell Biol 3(2):107–113

    Article  PubMed  CAS  Google Scholar 

  • Tatsumi Y, Sugimoto N, Yugawa T, Narisawa-Saito M, Kiyono T, Fujita M (2006) Deregulation of Cdt1 induces chromosomal damage without rereplication and leads to chromosomal instability. J Cell Sci 119(Pt 15):3128–3140

    Article  PubMed  CAS  Google Scholar 

  • Tsujimura K, Asamoto M, Suzuki S, Hokaiwado N, Ogawa K, Shirai T (2006) Prediction of carcinogenic potential by a toxicogenomic approach using rat hepatoma cells. Cancer Sci 97(10):1002–1010

    Article  PubMed  CAS  Google Scholar 

  • Uehara T, Minowa Y, Morikawa Y, Kondo C, Maruyama T, Kato I, Nakatsu N, Igarashi Y, Ono A, Hayashi H, Mitsumori K, Yamada H, Ohno Y, Urushidani T (2011) Prediction model of potential hepatocarcinogenicity of rat hepatocarcinogens using a large-scale toxicogenomics database. Toxicol Appl Pharmacol 255(3):297–306

    Article  PubMed  CAS  Google Scholar 

  • Uno S, Dalton TP, Derkenne S, Curran CP, Miller ML, Shertzer HG, Nebert DW (2004) Oral exposure to benzo[a]pyrene in the mouse: detoxication by inducible cytochrome P450 is more important than metabolic activation. Mol Pharmacol 65(5):1225–1237

    Article  PubMed  CAS  Google Scholar 

  • van Delft JH, van Agen E, van Breda SG, Herwijnen MH, Staal YC, Kleinjans JC (2004) Discrimination of genotoxic from non-genotoxic carcinogens by gene expression profiling. Carcinogenesis 25(7):1265–1276

    Article  PubMed  Google Scholar 

  • van Kesteren PC, Zwart PE, Pennings JL, Gottschalk WH, Kleinjans JC, van Delft JH, van Steeg H, Luijten M (2011) Deregulation of cancer-related pathways in primary hepatocytes derived from DNA repair-deficient Xpa −/− p53 +/− mice upon exposure to benzo[a]pyrene. Toxicol Sci 123(1):123–132

    Article  PubMed  Google Scholar 

  • van Kreijl CF, McAnulty PA, Beems RB, Vynckier A, van Steeg H, Fransson-Steen R, Alden CL, Forster R, van der Laan JW, Vandenberghe J (2001) Xpa and Xpa/p53 +/− knockout mice: overview of available data. Toxicol Pathol 29(Suppl):117–127

    Article  PubMed  Google Scholar 

  • van Steeg H, de Vries A, van Oostrom CT, van Benthem J, Beems RB, van Kreijl CF (2001) DNA repair-deficient Xpa and Xpa/p53 +/− knock-out mice: nature of the models. ToxicolPathol 29(Suppl):109–116

    Google Scholar 

  • Verwei M, van Burgsteden JA, Krul CA, van de Sandt JJ, Freidig AP (2006) Prediction of in vivo embryotoxic effect levels with a combination of in vitro studies and PBPK modelling. Toxicol Lett 165(1):79–87

    Article  PubMed  CAS  Google Scholar 

  • Waters MD, Jackson M, Lea I (2010) Characterizing and predicting carcinogenicity and mode of action using conventional and toxicogenomics methods. Mutat Res 705(3):184–200

    Article  PubMed  CAS  Google Scholar 

  • Wohlschlegel JA, Dwyer BT, Dhar SK, Cvetic C, Walter JC, Dutta A (2000) Inhibition of eukaryotic DNA replication by geminin binding to Cdt1. Science 290(5500):2309–2312

    Article  PubMed  CAS  Google Scholar 

  • Yauk CL, Jackson K, Malowany M, Williams A (2011) Lack of change in microRNA expression in adult mouse liver following treatment with benzo(a)pyrene despite robust mRNA transcriptional response. Mutat Res 722(2):131–139

    Article  PubMed  CAS  Google Scholar 

  • Zeilmaker MJ, van Eijkeren JCH, Olling M (1999) A PBPK-model for B(a)P in the rat relating dose and liver DNA-adduct level. RIVM Report 658603 008

Download references

Acknowledgments

We thank R. Vlug, J. Bos, H. Strootman and T. van de Kuil for their support with the hepatocytes isolations. We also thank Prof. Dr. J. Hengstler for his advice on hepatocyte isolation and culturing. This work was supported by the Technology Foundation STW [grant MFA6809].

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Luijten.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Kesteren, P.C.E., Zwart, P.E., Schaap, M.M. et al. Benzo[a]pyrene-induced transcriptomic responses in primary hepatocytes and in vivo liver: Toxicokinetics is essential for in vivo–in vitro comparisons. Arch Toxicol 87, 505–515 (2013). https://doi.org/10.1007/s00204-012-0949-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-012-0949-5

Keywords

Navigation