Skip to main content
Log in

Nanostructured calcium silicate hydrate seeds accelerate concrete hardening: a combined assessment of benefits and risks

  • Inorganic compounds
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Nanotechnology creates new possibilities to control and improve material properties for civil infrastructure. Special focus in this area is put on Portland cement and gypsum. Together their annual production is by far larger than for any other material worldwide. Nanomodification of these materials can be done during the few hours between dissolution and hardening, especially by nucleation of the re-crystallization with suitable colloids. Here we report first results in homogeneous seeding of the precipitation of calcium silicate hydrates within a real Portland cement composition. The occupational safety during the production phase and during mixing of concrete paste is addressed in detail by in vivo testing. We perform 5-day inhalation with 21-day recovery in rats and analyze organ-specific toxicity and 71 endpoints from bronchoalveolar lavage (BALF) and blood. In BALF parameters, no test-related changes were observed, indicating the generally low toxicity of the test material. Some mild lesions were observed in larynx level. In the lungs, all animals of the 50 mg/m³ concentration group revealed a minimal to mild increase in alveolar macrophages, which recovered back to control level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Backes C, Karabudak E, Schmidt CD, Hauke F, Hirsch A, Wohlleben W (2010) Determination of the surfactant density on SWCNTs by analytical ultracentrifugation. Chem A Eur J 16:13176–13184

    Article  CAS  Google Scholar 

  • Cölfen H, Antonietti M (eds) (2008) Mesocrystals and nonclassical crystallization. Wiley, Hoboken, NJ. ISBN: 978-0-470-02981-7

  • Dunnett CW (1955) A multiple comparison procedure for comparing several treatments with a control. J Am Stat Assoc 50:1096–1121

    Google Scholar 

  • Dunnett CW (1964) New tables for multiple comparisons with control. Biometrics 20:482–491

    Article  Google Scholar 

  • Duriez M (1956) Possibilités nouvelles dans le durcissement rapide des ciments, mortiers et bétons. Annales de l’Institut technique du bâtiment et des 98:482–483

  • Garrault S, Nonat A (2001) Hydrated layer formation on tricalcium and dicalcium silicate surfaces: experimental study and numerical simulations. Langmuir 17:8131–8138

    Article  CAS  Google Scholar 

  • Gauffinet S, Finot E, Lesniewska R, Nonat A (1998) Direct observation of the growth of calcium silicate hydrate on alite and silica surfaces by atomic force microscopy. Compte rendus de’l academie des sciences: series II fasciule A—sciences de la terre et des planetes 327:231–236

    Google Scholar 

  • Greenberg SA, Chang TN (1965) Colloidal hydrated calcium silicates. II. Solubility relations in the calcium oxide-silica-water system at 25 degree. J Phys Chem 69:182–188

    Article  CAS  Google Scholar 

  • Hussain SM, Braydich-Stolle L, Schrand AM, Murdock RC, Yu KO, Mattie DM, Schlager JJ, Terrones M (2009) Toxicity evaluation for safe use of nanomaterials: recent achievements and technical challenges. Adv Mater 21:1–11

    Article  Google Scholar 

  • Kaufmann W, Bader R, Ernst H, Harada T, Hardisty J, Kittel B, Kolling A, Pino M, Renne R, Rittinghausen S, Schulte A, Wöhrmann T, Rosenbruch M (2009) 1st International ESTP Expert Workshop: “Larynx squamous metaplasia”. A re-consideration of morphology and diagnostic approaches in rodent studies and its relevance for human risk assessment. Exp Toxicol Pathol 61:591–603

    Google Scholar 

  • Landsiedel R, Ma-Hock L, Kroll A, Hahn D, Schnekenburger J, Wiench K, Wohlleben W (2010) Testing metal-oxide nanomaterials for human safety. Adv Mater 22:2601–2627

    Article  PubMed  CAS  Google Scholar 

  • Ma-Hock L, Gamer AO, Landsiedel R, Leibold E, Frechen T, Sens B, Linsenbuehler M, van Ravenzwaay B (2007) Generation and characterization of test atmospheres with nanomaterials. Inhal Toxicol 19:833–848

    Article  PubMed  CAS  Google Scholar 

  • Ma-Hock L, Burkhardt S, Strauss V, Gamer A, Wiench K, van Ravenzwaay B, Landsiedel R (2009) Development of a short-term inhalation test in the rat using nano-titanium dioxide as a model substance. Inhal Toxicol 21:102–118

    Article  PubMed  CAS  Google Scholar 

  • Nicoleau L (2010) New calcium silicate hydrate network. Transport Res Record J Transport Res Board 2142:42–51

    Article  CAS  Google Scholar 

  • Nudelman F, Chen HH, Goldberg HA, Weiner S, Addadi L (2007) Spiers memorial lecture: lessons from biomineralization. Comparing the growth strategies of mollusc shell prismatic and nacreous layers in Atrina rigida. Faraday Discuss 136:9–25

    Article  PubMed  CAS  Google Scholar 

  • Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839

    Article  PubMed  Google Scholar 

  • Organization for Economic Co-operation and Development Environment Directorate (1998) OECD Principles on good laboratory practice. OECD series on principles of good laboratory practice and compliance monitoring

  • Osimitz TG, Droege W, Finch JM (2007) Toxicologic significance of histologic change in the larynx of the rat following inhalation exposure: a critical review. Toxicol Appl Pharmacol 225:229–237

    Article  PubMed  CAS  Google Scholar 

  • Postma GN, Halum SL (2006) Laryngeal and pharyngeal complications of gastroesophageal reflux disease. GI Motil online. doi:10.1038/gimo46

  • Renne RA, Gideon KM, Harbo SJ, Staska LM, Grumbein SL (2007) Upper respiratory tract lesions in inhalation toxicology. Toxicol Pathol 35:163–169

    Article  PubMed  CAS  Google Scholar 

  • Richardson IG (2008) The calcium silicate hydrates. Cem Concr Res 38:137–158

    Article  CAS  Google Scholar 

  • Schulze C, Kroll A, Lehr C-M, Schäfer UF, Becker K, Schnekenburger J, Schulze-Isfort C, Landsiedel R, Wohlleben W (2008) Not ready to use—overcoming pitfalls when dispersing nanoparticles in physiological media. Nanotoxicology 2:51–61

    Article  CAS  Google Scholar 

  • Siegel S, Castellan NJ Jr (1956) Non-parametric statistics for the behavioural sciences. McGraw-Hill, New York

    Google Scholar 

  • Som C, Berges M, Chaudhry Q, Dusinska M, Fernandes TF, Olsen SI, Nowack B (2010) The importance of life cycle concepts for the development of safe nanoproducts. Toxicology 269:160–169

    Article  PubMed  CAS  Google Scholar 

  • Stone V (2009) ENRHES final report, pp 1–408. http://nmi.jrc.ec.europa.eu/project/ENRHES.htm

  • Taylor HFW (1997) Cement chemistry. Thomas Telford Publishing, London

    Book  Google Scholar 

  • U.S. Geological Survey (2010) United States geological survey: cement statistics and information. U.S. Department of the Interior, U.S. Geological Survey, USGS, National Center, Reston, VA, p 20192

  • van Ravenzwaay B, Landsiedel R, Fabian E, Burkhardt S, Strauss V, Ma-Hock L (2009) Comparing fate and effects of three particles of different surface properties: Nano-TiO2, pigmentary TiO2 and quartz. Toxicol Lett 186:152–159

    Article  PubMed  Google Scholar 

  • Vitruvius MP (25 B.C.) de Architectura, Book I.X

  • Warheit DB, Hartsky MA (1993) Role of alveolar macrophage chemotaxis and phagocytosis in pulmonary clearance responses to inhaled particles: comparisons among rodent species. Microsc Res Tech 26:412–422

    Article  PubMed  CAS  Google Scholar 

  • Wohlleben W, Brill S, Meier MW, Mertler M, Cox G, Hirth S, von Vacano B, Strauss V, Treumann S, Wiench K, Ma-Hock L, Landsiedel R (2011) On the lifecycle of nanocomposites: comparing released fragments and their vivo hazard from three release mechanisms and four nanocomposites. Small 7:2384–2395

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Bernhard von Vacano and Dr. Gerhard Cox (BASF SE) for structural characterization.

Conflict of interest

M. Bräu is an employee of BASF Construction Chemicals GmbH; the other authors are employees of BASF SE central units.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wendel Wohlleben.

Additional information

This article is published as a part of the Special Issue “Nanotoxicology II” on the ECETOC Satellite workshop, Dresden 2010 (Innovation through Nanotechnology and Nanomaterials + Current Aspects of Safety Assessment and Regulation).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bräu, M., Ma-Hock, L., Hesse, C. et al. Nanostructured calcium silicate hydrate seeds accelerate concrete hardening: a combined assessment of benefits and risks. Arch Toxicol 86, 1077–1087 (2012). https://doi.org/10.1007/s00204-012-0839-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-012-0839-x

Keywords

Navigation