Skip to main content
Log in

Evaluation of biocompatible dispersants for carbon nanotube toxicity tests

  • Inorganic Compounds
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Dispersion is one of the key obstacles to evaluating the in vitro and in vivo toxicity of carbon nanotubes (CNTs), as the aggregation or agglomeration of CNTs in culture media or vehicles complicates the interpretation of the toxicity test results. Thus, to test the dispersion of CNTs in biocompatible solutions, 5 known biocompatible dispersants were selected that are widely used for nanomaterial toxicity evaluation studies. Single-wall nanotubes (SWCNTs) and multi-wall nanotubes (MWCNTs) were both dispersed in these dispersants and their macrodispersion evaluated using a light absorbance method. The dispersion stability of the dispersed SWCNTs and MWCNTs was also evaluated for 16 weeks, plus the dispersants were tested for their innate toxicity using trypan blue dye exclusion, lactate dehydrogenase (LDH) leakage, and neutral red assays. All the dispersants were found to be biocompatible in the cytotoxicity tests when compared with a positive control of 2% Triton X-100. In the dispersion tests, 0.02, 0.1, and 0.5% MWCNTs and SWCNTs were diluted in the respective dispersants. Distilled water and dimethylsulfoxide (DMSO) both showed a poor macrodispersion of only 1–13% for the various CNT concentrations. In 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), the 0.02 and 0.1% MWCNTs showed a macrodispersion of 11 and 74%, respectively, while the 0.02 and 0.1% SWCNTs showed a macrodispersion of 15 and 16%, respectively. In 0.5% bovine serum albumin (BSA), the 0.02, 0.1, and 0.5% MWCNTs showed a very good macrodispersion of 32, 53, and 70%, respectively, yet the 0.02% SWCNTs only showed a macrodispersion of 17%. In 1% Tween 80, the 0.02–0.5% SWNCTs exhibited a good macrodispersion of 27–81%, whereas the 0.02–05% MWCNTs only showed a macrodispersion of 13–23%. The dispersion stability of the CNTs during 16 weeks was in the following descending order of BSA, Tween 80, DPPC, and DMSO for the MWCNTs and BSA, DPPC, Tween 80, and DMSO for the SWNCTs. Thus, appropriate dispersants are proposed according to the type of CNT, experiment concentration, and treatment duration. Also, it is suggested that the dispersibility, dispersion stability, and biocompatibility of the selected dispersant should all be confirmed before a toxicity evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alpatova AL, Shan W, Babica P, Upham BL, Rogensues AR, Masten SJ, Drown E, Mohanty AK, Alocilja EC, Tarabara VV (2010) Single-walled carbon nanotubes dispersed in aqueous media via non-covalent functionalization: effect of dispersant on the stability, cytotoxicity, and epigenetic toxicity of nanotube suspensions. Water Res 44:505–520

    Article  PubMed  CAS  Google Scholar 

  • Bihari P, Vippola M, Schultes S, Praetner M, Khandoga AG, Reichel CA, Coester C, Tuomi T, Rehberg M, Krombach F (2008) Optimized dispersion of nanoparticles for biological in vitro and in vivo studies. Part Fibre Toxicol 5:14

    Article  PubMed  Google Scholar 

  • Borenfreund E, Puerner JA (1984) A simple quantitative procedure using monolayer culture for toxicity assays. J Tissue Cult Meth 9:7–9

    Article  Google Scholar 

  • Buford MC, Hamilton RF Jr, Holian A (2007) A comparison of dispersing media for various engineered carbon nanoparticles. Part Fibre Toxicol 4:6

    Article  PubMed  Google Scholar 

  • Cheng C, Muller KH, Koziol KK, Skepper JN, Midgley PA, Welland ME, Porter AE (2009) Toxicity and imaging of multi-walled carbon nanotubes in human macrophage cells. Biomaterials 30:4152–4160

    Article  PubMed  CAS  Google Scholar 

  • Di Sotto A, Chiaretti M, Carru GA, Bellucci S, Mazzantia G (2009) Multi-walled carbon nanotubes: lack of mutagenic activity in the bacterial reverse mutation assay. Toxicol Lett 184:192–197

    Article  PubMed  CAS  Google Scholar 

  • Fotakis G, Timbrell JA (2006) In vitro cytotoxicity assays: comparison of LDH, neutral red, MTT and protein assay in hepatoma cell lines following exposure to cadmium chloride. Toxicol Lett 164:97–103

    Article  PubMed  CAS  Google Scholar 

  • Foucaud L, Wilson MR, Brown DM, Stone V (2007) Measurement of reactive species production by nanoparticles prepared in biologically relevant media. Toxicol Lett 174:1–9

    Article  PubMed  CAS  Google Scholar 

  • Garza KM, Soto KF, Murr LE (2008) Cytotoxicity and reactive oxygen species generation from aggregated carbon and carbonaceous nanoparticulate materials. Int J Nanomed 3:83–94

    Article  CAS  Google Scholar 

  • Geiser M, Rothen-Rutishauser B, Kapp N, Schürch S, Kreyling W, Schulz H, Semmler M, Im Hof V, Heyder J, Gehr P (2005) Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells. Environ Health Perspect 113:1555–1560

    Article  PubMed  Google Scholar 

  • Girifalco LA, Hodak M, Lee RS (2000) Carbon nanotubes, buckyballs, ropes, and a universal graphitic potential. Phys Rev B 62:13104

    Article  CAS  Google Scholar 

  • Harper TE, Vas CR (2005) From polymer chemistry to nanotechnology: the return of the renaissance scientist? Abstr Pap Am Chem Soc 229:U906

    Google Scholar 

  • Helland A, Wick P, Koehler A, Schmid K, Som C (2007) Reviewing the environmental and human health knowledge base of carbon nanotubes. Environ Health Persp 115:1125–1131

    Article  CAS  Google Scholar 

  • Hertel T, Hagen A, Talalaev V, Arnold K, Hennrich F, Kappes MM, Rosenthal S, McBride J, Ulbricht H, Flahaut E (2005) Spectroscopy of single- and doublewall carbon nanotubes in different environments. Nano Lett 5:511–514

    Article  PubMed  CAS  Google Scholar 

  • Herzog E, Byrne HJ, Casey A, Davoren M, Lenz AG, Maier KL, Duschl A, Oostingh GJ (2009a) SWCNT suppress inflammatory mediator responses in human lung epithelium in vitro. Toxicol Appl Pharmacol 234:378–390

    Article  PubMed  CAS  Google Scholar 

  • Herzog E, Byrne HJ, Davoren M, Casey A, Duschl A, Oostingh GJ (2009b) Dispersion medium modulates oxidative stress response of human lung epithelial cells upon exposure to carbon nanomaterial samples. Toxicol Appl Pharmacol 236:276–281

    Article  PubMed  CAS  Google Scholar 

  • Huczko A, Lange H, Calko E, Grubek-Jaworska H, Droszez P (2001) Physiological testing of carbon nanotubes: are they asbestos-like? Fullerene Sci Technol 9:251–254

    Article  CAS  Google Scholar 

  • Inoue K, Takano H, Koike E, Yanagisawa R, Sakurai M, Tasaka S, Ishizaka A, Shimada A (2008) Effects of pulmonary exposure to carbon nanotubes on lung and systemic inflammation with coagulatory disturbance induced by lipopolysaccharide in mice. Exp Biol Med 233:1583–1590

    Article  CAS  Google Scholar 

  • ISO (International Standard Organization) TS (Technical Specification) 27687 (2008) Nanotechnologies—terminology and definitions for nano-objects- Nanoparticle, nanofibre and nanoplate, ISO, Geneva

  • Jia G, Wang H, Yan L, Wang X, Pei R, Yan T, Zhao Y, Guo X (2005) Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube and fullerene. Environ Sci Technol 39:1378–1383

    Article  PubMed  CAS  Google Scholar 

  • Jiang JK, Oberdorster G, Biswas P (2009) Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J Nanopart Res 11:77–89

    Article  CAS  Google Scholar 

  • Kim JS, Lee K, Lee YH, Cho HS, Kim KH, Choi KH, Lee SH, Song KS, Kang CS, Yu IJ (2010a) Aspect ratio has no effect on genotoxicity of multi-wall carbon nanotubes. Arch Toxicol. Epub ahead of print

  • Kim JS, Song KS, Joo HJ, Lee JH, Yu IJ (2010b) Determination of cytotoxicityattributed to multiwall carbon nanotubes (MWCNT) in normal human embryonic lung cell (WI-38) line. J Toxicol Environ Health A 73:1521–1529

    Article  PubMed  CAS  Google Scholar 

  • Korean Agency for Technology and Standards (2009) Korean Industrial Standards D 2717, Evaluation method for the degree of macrodispersion of carbon nanotubes using UV-VIS-NIR absorption spectroscopy

  • Limbach LK, Li Y, Grass RN, Brunner TJ, Hintermann MA, Muller M, Gunther D, Stark WJ (2005) Oxide nanoparticle uptake in human lung fibroblasts: effects of particle size, agglomeration, and diffusion at low concentrations. Environ Sci Technol 39:9370–9376

    Google Scholar 

  • Limbach LK, Wick P, Manser P, Grass RN, Bruinink A, Stark WJ (2007) Exposure of engineered nanoparticles to human lung epithelial cells: influence of chemical composition and catalytic activity on oxidative stress. Environ Sci Technol 41:4158–4163

    Article  PubMed  CAS  Google Scholar 

  • Madni I, Hwang CY, Park SD, Choa YH, Kim HT (2010) Mixed surfactant system for stable suspension of multiwalled carbon nanotubes. Colloids Surf A Physicochem Eng Asp 358:101–107

    Article  CAS  Google Scholar 

  • Mercer RR, Hubbs AF, Scabilloni JF, Wang L, Battelli LA, Schwegler-Berry D, Castranova V, Porter DW (2010) Distribution and persistence of pleural penetrations by multi-walled carbon nanotubes. Part Fibre Toxicol 7:28

    Article  PubMed  Google Scholar 

  • Moore VC, Strano MS, Haroz EH, Hauge RH, Smalley RE, Schmidt J, Talmon Y (2003) Individually suspended single-walled carbon nanotubes in various surfactants. Nano Lett 3:1379–1382

    Article  CAS  Google Scholar 

  • Muller J, Huaux F, Moreau N, Misson P, Heilier JF, Delos M, Arras M, Fonseca A, Nagy JB, Lison D (2005) Respiratory toxicity of multi-wall carbon nanotubes. Toxicol Appl Pharmacol 207:221–231

    Article  PubMed  CAS  Google Scholar 

  • Poland CA, Duffin R, Kinloch I, Maynard A, Wallace WA, Seaton A, Stone V, Brown S, Macnee W, Donaldson K (2008) Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nanotechnol 3:423–428

    Article  PubMed  CAS  Google Scholar 

  • Porter D, Sriram K, Wolfarth M, Jefferson A, Schwegler-Berry D, Andrew ME, Castranova V (2008) A biocompatible medium for nanoparticle dispersion. Nanotoxicol 2:144–154

    Article  CAS  Google Scholar 

  • Post M, van Golde LM (1988) Metabolic and developmental aspects of the pulmonary surfactant system. Biochim Biophys Acta 947:249–286

    PubMed  CAS  Google Scholar 

  • Rastogi R, Kaushal R, Tripathi SK, Sharma AL, Kaur I, Bharadwaj LM (2008) Comparative study of carbon nanotube dispersion using surfactants. J Colloid Interface Sci 328:421–428

    Article  PubMed  CAS  Google Scholar 

  • Rothen-Rutishauser BM, Schurch S, Haenni B, Kapp N, Gehr P (2006) Interaction of fine particles and nanoparticles with red blood cells visualized with advanced microscopic techniques. Environ Sci Technol 40:4353–4359

    Article  PubMed  CAS  Google Scholar 

  • Royal Society and Royal Academy of Engineering (2004) Nanoscience and nanotechnologies: opportunities and uncertainties. Royal Society Publications, London

    Google Scholar 

  • Sager TM, Porter DW, Robinson VA, Lindsley WG, Schwegler-Berry DE, Castranova V (2007) Improved method to disperse nanoparticles for in vitro and in vivo investigation of toxicity. Nanotoxicol 1:118–129

    Article  CAS  Google Scholar 

  • Schipper ML, Nakayama-Ratchford N, Davis CR, Kam NWS, Chu P, Liu Z, Sun X, Dai H, Gambhir SS (2008) A pilot toxicology study of single-walled carbon nanotubes in a small sample of mice. Nat Nanotech 3:216–221

    Article  CAS  Google Scholar 

  • Soto KF, Carrasco A, Powell TG, Garza KM, Murr LE (2005) Comparative in vitro cytotoxicity assessment of some manufactured nanoparticulate materials characterized by transmission electron microscopy. J Nanopart Res 7:145–169

    Article  CAS  Google Scholar 

  • Takagi A, Hirose A, Nishimura T, Fukumori N, Ogata A, Ohashi N, Kitajima S, Kanno J (2008) Induction of mesothelioma in p53 ± mouse by intraperitoneal application of multi-wall carbon nanotube. J Toxicol Sci 33:105–116

    Article  PubMed  CAS  Google Scholar 

  • Wallace W, Keane M, Murray D, Chisholm W, Maynard A, Ong T (2007) Phospholipid lung surfactant and nanoparticle surface toxicity: Lessons from diesel soots and silicate dusts. J Nanopart Res 9:23–38

    Article  CAS  Google Scholar 

  • Wang H, Wang J, Deng X, Sun H, Shi Z, Gu Z, Liu Y, Zhao Y (2004) Biodistribution of carbon single-wall nanotubes in mice. J Nanosci Nanotechnol 4:1019–1024

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Castranova V, Mishra A, Chen B, Mercer RR, Schwegler-Berry D, Rojanasakul Y (2010) Dispersion of single-walled carbon nanotubes by a natural lung surfactant for pulmonary in vitro and in vivo toxicity studies. Part Fibre Toxicol 7:31

    Article  PubMed  Google Scholar 

  • Wick P, Manser P, Limbach LK, ttlaff-Weglikowska U, Krumeich F, Roth S, Stark WJ, Bruinink A (2007) The degree and kind of agglomeration affect carbon nanotube cytotoxicity. Toxicol Lett 168:121–131

    Article  PubMed  CAS  Google Scholar 

  • Yurekli K, Mitchell CA, Krishnamootri R (2004) Small-angle neutron scattering from surfactant-assisted aqueous dispersions of carbon nanotubes. J Am Chem Soc 126:9902–9903

    Article  PubMed  CAS  Google Scholar 

  • Zhao Y, Xing G, Chai Z (2008) Are carbon nanotubes safe? Nat Nanotoxicol 3:191–192

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Nano R&D program through the National Research Foundation of Korea funded by the Korean Ministry of Education, Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Il Je Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, J.S., Song, K.S., Lee, J.H. et al. Evaluation of biocompatible dispersants for carbon nanotube toxicity tests. Arch Toxicol 85, 1499–1508 (2011). https://doi.org/10.1007/s00204-011-0723-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-011-0723-0

Keywords

Navigation