Skip to main content

Advertisement

Log in

Dopaminergic neurotoxicity following pulmonary exposure to manganese-containing welding fumes

  • Inorganic Compounds
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

The potential for development of Parkinson’s disease (PD)-like neurological dysfunction following occupational exposure to aerosolized welding fumes (WF) is an area of emerging concern. Welding consumables contain a complex mixture of metals, including iron (Fe) and manganese (Mn), which are known to be neurotoxic. To determine whether WF exposure poses a neurological risk particularly to the dopaminergic system, we treated Sprague–Dawley rats with WF particulates generated from two different welding processes, gas metal arc-mild steel (GMA-MS; low Mn, less water-soluble) and manual metal arc-hard surfacing (MMA-HS; high Mn, more water-soluble) welding. Following repeated intratracheal instillations (0.5 mg/rat, 1/week × 7 weeks) of GMA-MS or MMA-HS, elemental analysis and various molecular indices of neurotoxicity were measured at 1, 4, 35 or 105 days after last exposure. MMA-HS exposure, in particular, led to increased deposition of Mn in striatum and midbrain. Both fumes also caused loss of tyrosine hydroxylase (TH) protein in the striatum (~20%) and midbrain (~30%) by 1 day post-exposure. While the loss of TH following GMA-MS was transient, a sustained loss (34%) was observed in the midbrain 105 days after cessation of MMA-HS exposure. In addition, both fumes caused persistent down-regulation of dopamine D2 receptor (Drd2; 30–40%) and vesicular monoamine transporter 2 (Vmat2; 30–55%) mRNAs in the midbrain. WF exposure also modulated factors associated with synaptic transmission, oxidative stress, neuroinflammation and gliosis. Collectively, our findings demonstrate that repeated exposure to Mn-containing WF can cause persistent molecular alterations in dopaminergic targets. Whether such perturbations will lead to PD-like neuropathological manifestations remains to be elucidated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

BALF:

Bronchoalveolar lavage fluid

CCL2:

Chemokine–chemokine ligand 2

CXCL2:

Chemokine-X-chemokine ligand 2

CNS:

Central nervous system

COX:

Cycloxygenase

DMT1:

Divalent metal transporter 1

DRD2:

Dopamine D2 receptor

EMR1:

Egf-like module containing mucin-like hormone receptor-like 1

FLISA:

Fluorescence-linked immunosorbent assay

GFAP:

Glial fibrillary acidic protein

GMA-MS:

Gas metal arc-mild steel

HO:

Heme-oxygenase

ICP-AES:

Inductive coupled plasma atomic absorption spectroscopy

IL6:

Interleukin 6

ITGAM:

Integrin αM

LDH:

Lactate dehydrogenase

MMA-HS:

Manual metal arc-hard surfacing

NOS:

Nitric oxide synthase

PCR:

Polymerase chain reaction

PD:

Parkinson’s disease

PMN:

Polymorphonuclear leukocyte

SDS:

Sodium dodecyl sulfate

TH:

Tyrosine hydroxylase

TNF:

Tumor necrosis factor

VMAT2:

Vesicular monoamine transporter 2

WF:

Welding fume

References

  • ACGIH (1994) 1994–1995 Threshold limit values for chemical substances and physical agents and biological exposure indices. American Conference of Governmental Industrial Hygienists, Cincinnati OH. p 36

    Google Scholar 

  • Alexander GE, Crutcher MD (1990) Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci 13(7):266–271

    Article  PubMed  CAS  Google Scholar 

  • Antonini JM, Krishna Murthy GG, Rogers RA, Albert R, Ulrich GD, Brain JD (1996) Pneumotoxicity and pulmonary clearance of different welding fumes after intratracheal instillation in the rat. Toxicol Appl Pharmacol 140(1):188–199

    Article  PubMed  CAS  Google Scholar 

  • Antonini JM, Lewis AB, Roberts JR, Whaley DA (2003) Pulmonary effects of welding fumes: review of worker and experimental animal studies. Am J Ind Med 43:350–360

    Article  PubMed  CAS  Google Scholar 

  • Antonini JM, Afshari AA, Stone S, Chen B, Schwegler-Berry D, Fletcher WG, Goldsmith WT, Vandestouwe KH, McKinney W, Castranova V, Frazer DG (2006) Design, construction, and characterization of a novel robotic welding fume generator and inhalation exposure system for laboratory animals. J Occup Environ Hyg 3(4):194–203

    Article  PubMed  CAS  Google Scholar 

  • Antonini JM, Sriram K, Benkovic SA, Roberts JR, Stone S, Chen BT, Schwegler-Berry D, Jefferson AM, Billig BK, Felton CM, Hammer MA, Ma F, Frazer DG, O’Callaghan JP, Miller DB (2009) Mild steel welding fume causes manganese accumulation and subtle neuroinflammatory changes but not overt neuronal damage in discrete brain regions of rats after short-term inhalation exposure. Neurotoxicology 30(6):915–925

    Article  PubMed  CAS  Google Scholar 

  • Antonini JM, Roberts JR, Chapman R, Soukup JM, Ghio AJ, Sriram K (2010) Pulmonary toxicity and extrapulmonary tissue distribution of metals after repeated exposure to different welding fumes. Inhal Toxicol. doi: 10.3109/08958371003621641

  • Aschner M, Vrana KE, Zheng W (1999) Manganese uptake and distribution in the central nervous system (CNS). Neurotoxicology 20(2–3):173–180

    PubMed  CAS  Google Scholar 

  • Aschner M, Erikson KM, Dorman DC (2005) Manganese dosimetry: species differences and implications for neurotoxicity. Crit Rev Toxicol 35(1):1–32

    Article  PubMed  CAS  Google Scholar 

  • Autissier N, Rochette L, Dumas P, Beley A, Loireau A, Bralet J (1982) Dopamine and norepinephrine turnover in various regions of the rat brain after chronic manganese chloride administration. Toxicology 24:175–182

    Article  PubMed  CAS  Google Scholar 

  • Boka G, Anglade P, Wallach D, Javoy-Agid F, Agid Y, Hirsch EC (1994) Immunocytochemical analysis of tumor necrosis factor and its receptors in Parkinson’s disease. Neurosci Lett 172:151–154

    Article  PubMed  CAS  Google Scholar 

  • Bonilla E (1980) L-Tyrosine hydroxylase activity in the rat brain after chronic oral administration of manganese chloride. Neurobehav Toxicol 2:37–41

    PubMed  CAS  Google Scholar 

  • Bowler RM, Gysens S, Diamond E, Nakagawa S, Drezgic M, Roels HA (2006) Manganese exposure: neuropsychological and neurological symptoms and effects in welders. Neurotoxicology 27(3):315–326

    Article  PubMed  CAS  Google Scholar 

  • Bowler RM, Nakagawa S, Drezgic M, Roels HA, Park RM, Diamond E, Mergler D, Bouchard M, Bowler RP, Koller W (2007a) Sequelae of fume exposure in confined space welding: a neurological and neuropsychological case series. Neurotoxicology 28(2):298–311

    Article  PubMed  CAS  Google Scholar 

  • Bowler RM, Roels HA, Nakagawa S, Drezgic M, Diamond E, Park R, Koller W, Bowler RP, Mergler D, Bouchard M, Smith D, Gwiazda R, Doty RL (2007b) Dose–effect relationships between manganese exposure and neurological, neuropsychological and pulmonary function in confined space bridge welders. Occup Environ Med 64(3):167–177

    Article  PubMed  CAS  Google Scholar 

  • Brenneman KA, Wong BA, Buccellato MA, Costa ER, Gross EA, Dorman DC (2000) Direct olfactory transport of inhaled manganese 54MnCl2 to the rat brain: toxicokinetic investigations in a unilateral nasal occlusion model. Toxicol Appl Pharmacol 169(3):238–248

    Article  PubMed  CAS  Google Scholar 

  • Burdo JR, Menzies SL, Simpson IA, Garrick LM, Garrick MD, Dolan KG, Haile DJ, Beard JL, Connor JR (2001) Distribution of divalent metal transporter 1 and metal transport protein 1 in the normal and Belgrade rat. J Neurosci Res 66(6):1198–1207

    Article  PubMed  CAS  Google Scholar 

  • Calne DB, Chu NS, Huang CC, Lu CS, Olanow W (1994) Manganism and idiopathic parkinsonism: similarities and differences. Neurology 44(9):1583–1586

    PubMed  CAS  Google Scholar 

  • Carlsson A (1975) Receptor-mediated control of dopamine metabolism. In: Usdin E, Bunney WE (eds) Pre- and postsynaptic receptors. Marcel Dekker, New York, pp 49–65

    Google Scholar 

  • Chung S–H (2008) Cyclin-dependent kinase 5: A critical regulator of neurotransmitter release. In: Ip NY, Tsai LH (eds) Cyclin dependent kinase 5. Springer, New York, pp 35–50

    Google Scholar 

  • Conrad ME, Umbreit JN, Moore EG, Hainsworth LN, Porubcin M, Simovich MJ, Nakada MT, Dolan K, Garrick MD (2000) Separate pathways for cellular uptake of ferric and ferrous iron. Am J Physiol Gastrointest Liver Physiol 279(4):G767–G774

    PubMed  CAS  Google Scholar 

  • Crossgrove JS, Yokel RA (2004) Manganese distribution across the blood–brain barrier. III. The divalent metal transporter-1 is not the major mechanism mediating brain manganese uptake. Neurotoxicology 25(3):451–460

    Article  PubMed  CAS  Google Scholar 

  • Crossgrove JS, Allen DD, Bukaveckas BL, Rhineheimer SS, Yokel RA (2003) Manganese distribution across the blood–brain barrier I. Evidence for carrier-mediated influx of manganese citrate as well as manganese and manganese transferrin. Neurotoxicology 24(1):3–13

    Article  PubMed  CAS  Google Scholar 

  • Díaz-Véliz G, Mora S, Gómez P, Dossi MT, Montiel J, Arriagada C, Aboitiz F, Segura-Aguilar J (2004) Behavioral effects of manganese injected in the rat substantia nigra are potentiated by dicumarol, a DT-diaphorase inhibitor. Pharmacol Biochem Behav 77:245–251

    Article  PubMed  CAS  Google Scholar 

  • Donaldson J (1987) The physiopathologic significance of manganese in brain: its relation to schizophrenia and neurodegenerative disorders. Neurotoxicology 8(3):451–462

    PubMed  CAS  Google Scholar 

  • Dorman DC, Owens JG, Morgan KT (1997) Olfactory neurotoxicology. In: Lowndes HE, Reuhl KR (eds) Comprehensive toxicology: Nervous system and behavioral toxicology, vol 11. Elsevier Sciences, Cambridge UK, pp 281–294

    Google Scholar 

  • Dorman DC, Brenneman KA, McElveen AM, Lynch SE, Roberts KC, Wong BA (2002) Olfactory transport: a direct route of delivery of inhaled manganese phosphate to the rat brain. J Toxicol Environ Health A 65(20):1493–1511

    Article  PubMed  CAS  Google Scholar 

  • Driscoll KE, Costa DL, Hatch G, Henderson R, Oberdorster G, Salem H, Schlesinger RB (2000) Intratracheal instillation as an exposure technique for the evaluation of respiratory tract toxicity: uses and limitations. Toxicol Sci 55(1):24–35

    Article  PubMed  CAS  Google Scholar 

  • Elder A, Gelein R, Silva V, Feikert T, Opanashuk L, Carter J, Potter R, Maynard A, Ito Y, Finkelstein J, Oberdorster G (2006) Translocation of inhaled ultrafine manganese oxide particles to the central nervous system. Environ Health Perspect 114:1172–1178

    Article  PubMed  CAS  Google Scholar 

  • Emara AM, el-Ghawabi SH, Madkour OI, el-Samra GH (1971) Chronic manganese poisoning in the dry battery industry. Br J Ind Med 28(1):78–82

    PubMed  CAS  Google Scholar 

  • Erikson H, Mägiste K, Plantin LO, Fonnum F, Hedström KG, Theodorsson-Norheim E, Kristensson K, Stålberg E, Heilbronn E (1987) Effects of manganese oxide on monkeys as revealed by a combined neurochemical, histological and neurophysiological evaluation. Arch Toxicol 61:46–52

    Article  Google Scholar 

  • Filipov NM, Seegal RF, Lawrence DA (2005) Manganese potentiates in vitro production of proinflammatory cytokines and nitric oxide by microglia through a nuclear factor kappa B-dependent mechanism. Toxicol Sci 84(1):139–148

    Article  PubMed  CAS  Google Scholar 

  • Finkelstein MM, Jerrett M (2007) A study of the relationships between Parkinson’s disease and markers of traffic-derived and environmental manganese air pollution in two Canadian cities. Environ Res 104(3):420–432

    Article  PubMed  CAS  Google Scholar 

  • Fored CM, Fryzek JP, Brandt L, Nise G, Sjögren B, McLaughlin JK, Blot WJ, Ekbom A (2006) Parkinson’s disease and other basal ganglia or movement disorders in a large nationwide cohort of Swedish welders. Occup Environ Med 63(2):135–140

    Article  PubMed  CAS  Google Scholar 

  • Fuentes P, Paris I, Nassif M, Caviedes P, Segura-Aguilar J (2007) Inhibition of VMAT-2 and DT-diaphorase induce cell death in a substantia nigra-derived cell line–an experimental cell model for dopamine toxicity studies. Chem Res Toxicol 20(5):776–783

    Article  PubMed  CAS  Google Scholar 

  • Gianutsos G, Morrow GR, Morris JB (1997) Accumulation of manganese in rat brain following intranasal administration. Fundam Appl Toxicol 37(2):102–105

    Article  PubMed  CAS  Google Scholar 

  • Glatt CE, Wahner AD, White DJ, Ruiz-Linares A, Ritz B (2006) Gain-of-function haplotypes in the vesicular monoamine transporter promoter are protective for Parkinson disease in women. Hum Mol Genet 15(2):299–305

    Article  PubMed  CAS  Google Scholar 

  • Gruenheid S, Canonne-Hergaux F, Gauthier S, Hackam DJ, Grinstein S, Gros P (1999) The iron transport protein NRAMP2 is an integral membrane glycoprotein that colocalizes with transferrin in recycling endosomes. J Exp Med 189(5):831–841

    Article  PubMed  CAS  Google Scholar 

  • Guilarte TR, Chen MK, McGlothan JL, Verina T, Wong DF, Zhou Y, Alexander M, Rohde CA, Syversen T, Decamp E, Koser AJ, Fritz S, Gonczi H, Anderson DW, Schneider JS (2006) Nigrostriatal dopamine system dysfunction and subtle motor deficits in manganese-exposed non-human primates. Exp Neurol 202(2):381–390

    Article  PubMed  CAS  Google Scholar 

  • Guilarte TR, Burton NC, McGlothan JL, Verina T, Zhou Y, Alexander M, Pham L, Griswold M, Wong DF, Syversen T, Schneider JS (2008) Impairment of nigrostriatal dopamine neurotransmission by manganese is mediated by pre-synaptic mechanism(s): implications to manganese-induced parkinsonism. J Neurochem 107(5):1236–1247

    Article  PubMed  CAS  Google Scholar 

  • Gunshin H, Mackenzie B, Berger UV, Gunshin Y, Romero MF, Boron WF, Nussberger S, Gollan JL, Hediger MA (1997) Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 388(6641):482–488

    Article  PubMed  CAS  Google Scholar 

  • Gupta SK, Murthy RC, Chandra SV (1980) Neuromelanin in manganese-exposed primates. Toxicol Lett 6(1):17–20

    Article  PubMed  CAS  Google Scholar 

  • Gwiazda RH, Lee D, Sheridan J, Smith DR (2002) Low cumulative manganese exposure affects striatal GABA but not dopamine. Neurotoxicology 23(1):69–76

    Article  PubMed  CAS  Google Scholar 

  • Hastings TG, Zigmond MJ (1997) Loss of dopaminergic neurons in parkinsonism: possible role of reactive dopamine metabolites. J Neural Transm Suppl 49:103–110

    PubMed  CAS  Google Scholar 

  • Hastings TG, Lewis DA, Zigmond MJ (1996) Reactive dopamine metabolites and neurotoxicity: implications for Parkinson’s disease. Adv Exp Med Biol 387:97–106

    PubMed  CAS  Google Scholar 

  • Heales SJ, Bolaños JP, Stewart VC, Brookes PS, Land JM, Clark JB (1999) Nitric oxide, mitochondria and neurological disease. Biochim Biophys Acta 1410(2):215–228

    Article  PubMed  CAS  Google Scholar 

  • Henriksson J, Tallkvist J, Tjälve H (1999) Transport of manganese via the olfactory pathway in rats: dosage dependency of the uptake and subcellular distribution of the metal in the olfactory epithelium and the brain. Toxicol Appl Pharmacol 156(2):119–128

    Article  PubMed  CAS  Google Scholar 

  • Huang CC, Lu CS, Chu NS, Hochberg F, Lilienfeld D, Olanow W, Calne DB (1993) Progression after chronic manganese exposure. Neurology 43(8):1479–1483

    PubMed  CAS  Google Scholar 

  • Hunter DD, Undem BJ (1999) Identification and substance P content of vagal afferent neurons innervating the epithelium of the guinea pig trachea. Am J Respir Crit Care Med 159:1943–1948

    PubMed  CAS  Google Scholar 

  • Huntley GW, Morrison JH, Prikhozhan A, Sealfon SC (1992) Localization of multiple dopamine receptor subtype mRNAs in human and monkey motor cortex and striatum. Mol Brain Res 15:181–188

    Article  PubMed  CAS  Google Scholar 

  • ICRP (1994) Human respiratory tract model for radiological protection: a report of a task group of the international commission on radiological protection. Annals ICRP 24(1–3):267–272

    Google Scholar 

  • Jenkins NT, Pierce WM-G, Eagar TW (2005) Particle size distribution of gas metal and flux cored arc welding fumes. Welding J 84:156S–163S

    Google Scholar 

  • Jenner P (2003) Oxidative stress in Parkinson’s disease. Ann Neurol 53(Suppl 3):S26–S38

    Article  PubMed  CAS  Google Scholar 

  • Josephs KA, Ahlskog JE, Klos KJ, Kumar N, Fealey RD, Trenerry MR, Cowl CT (2005) Neurologic manifestations in welders with pallidal MRI T1 hyperintensity. Neurology 64(12):2033–2039

    Article  PubMed  CAS  Google Scholar 

  • Karlsen JT, Farrants G, Torgrimsen T, Reith A (1992) Chemical composition and morphology of welding fume particles and grinding dusts. Am Ind Hyg Assoc J 53(5):290–297

    PubMed  CAS  Google Scholar 

  • Kepler GM, Richardson RB, Morgan KT, Kimbell JS (1998) Computer simulation of inspiratory nasal airflow and inhaled gas uptake in a rhesus monkey. Toxicol Appl Pharmacol 150(1):1–11

    Article  PubMed  CAS  Google Scholar 

  • Kessler KR, Wunderlich G, Hefter H, Seitz RJ (2003) Secondary progressive chronic manganism associated with markedly decreased striatal D2 receptor density. Mov Disord 18(2):217–218

    Article  PubMed  Google Scholar 

  • Kim Y, Kim JW, Ito K, Lim HS, Cheong HK, Kim JY, Shin YC, Kim KS, Moon Y (1999) Idiopathic parkinsonism with superimposed manganese exposure: utility of positron emission tomography. Neurotoxicology 20(2–3):249–252

    PubMed  CAS  Google Scholar 

  • Kimbell JS, Godo MN, Gross EA, Joyner DR, Richardson RB, Morgan KT (1997) Computer simulation of inspiratory airflow in all regions of the F344 rat nasal passages. Toxicol Appl Pharmacol 145:388–398

    Article  PubMed  CAS  Google Scholar 

  • Koller WC, Lyons KE, Truly W (2004) Effect of levodopa treatment for parkinsonism in welders: a double-blind study. Neurology 62(5):730–733

    PubMed  CAS  Google Scholar 

  • Korczynski RE (2000) Occupational health concerns in the welding industry. Appl Occup Environ Hyg 15(12):936–945

    Article  PubMed  CAS  Google Scholar 

  • Kreutzberg GW (1996) Microglia: a sensor for pathological events in the CNS. Trends Neurosci 19(8):312–318

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Edwards RH (1997) The role of vesicular transport proteins in synaptic transmission and neural degeneration. Annu Rev Neurosci 20:125–156

    Article  PubMed  CAS  Google Scholar 

  • Lu CS, Huang CC, Chu NS, Calne DB (1994) Levodopa failure in chronic manganism. Neurology 44(9):1600–1602

    PubMed  CAS  Google Scholar 

  • Lucchini R, Apostoli P, Perrone C, Placidi D, Albini E, Migliorati P, Mergler D, Sassine MP, Palmi S, Alessio L (1999) Long-term exposure to “low levels” of manganese oxides and neurofunctional changes in ferroalloy workers. Neurotoxicology 20(2–3):287–297

    PubMed  CAS  Google Scholar 

  • Lucchini RG, Albini E, Benedetti L, Borghesi S, Coccaglio R, Malara EC, Parrinello G, Garattini S, Resola S, Alessio L (2007) High prevalence of Parkinsonian disorders associated to manganese exposure in the vicinities of ferroalloy industries. Am J Ind Med 50(11):788–800

    Article  PubMed  CAS  Google Scholar 

  • Mansour A, Meador-Woodruff JH, Camp DM, Robinson TE, Bunzow J, Van Tol H, Civelli O, Akil H, Watson SJ (1990) The effects of nigrostriatal 6-hydroxydopamine lesions on dopamine D2 receptor mRNA and opioid systems. Prog Clin Biol Res 328:227–230

    PubMed  CAS  Google Scholar 

  • Marsh GM, Gula MJ (2006) Employment as a welder and Parkinson’s disease among heavy equipment manufacturing workers. J Occup Environ Med 48(10):1031–1046

    Article  PubMed  Google Scholar 

  • Matczak W, Chmielnicka J (1993) Relation between various chromium compounds and some other elements in fumes from manual metal arc stainless steel welding. Br J Ind Med 50(3):244–251

    PubMed  CAS  Google Scholar 

  • Matczak W, Przybylska-Stanislawska M (2004) Determination of fumes and their elements from flux cored arc welding. Med Pr 55(6):481–489

    PubMed  CAS  Google Scholar 

  • Matsubara M, Kusubata M, Ishiguro K, Uchida T, Titani K, Taniguchi H (1996) Site-specific phosphorylation of synapsin I by mitogen-activated protein kinase and Cdk5 and its effects on physiological functions. J Biol Chem 271(35):21108–21113

    Article  PubMed  CAS  Google Scholar 

  • Meador-Woodruff JH, Mansour A (1991) Expression of the dopamine D2 receptor gene in brain. Biol Psych 30:985–1007

    Article  CAS  Google Scholar 

  • Meador-Woodruff JH, Mansour A, Bunzow JR, Van Tol HHM, Watson SJ, Civelli O (1989) Distribution of D2 receptor mRNA in rat brain. Proc Natl Acad Sci USA 86:7625–7628

    Article  PubMed  CAS  Google Scholar 

  • Mengod G, Martinez-Mir MI, Vilaró PalaciosJM (1989) Localization of the mRNA for the dopamine D2 receptor in the rat brain by in situ hybridization histochemistry. Proc Natl Acad Sci USA 86:8560–8564

    Article  PubMed  CAS  Google Scholar 

  • Meo SA, Al-Khlaiwi T (2003) Health hazards of welding fumes. Saudi Med J 24(11):1176–1182

    PubMed  Google Scholar 

  • Mergler D, Baldwin M (1997) Early manifestations of manganese neurotoxicity in humans: an update. Environ Res 73(1–2):92–100

    Article  PubMed  CAS  Google Scholar 

  • Milatovic D, Yin Z, Gupta RC, Sidoryk M, Albrecht J, Aschner JL, Aschner M (2007) Manganese induces oxidative impairment in cultured rat astrocytes. Toxicol Sci 98(1):198–205

    Article  PubMed  CAS  Google Scholar 

  • Mogi M, Harada M, Narabayashi H, Inagaki H, Minami M, Nagatsu T (1996) Interleukin (IL)-1 beta, IL-2, IL-4, IL-6 and transforming growth factor-alpha levels are elevated in ventricular cerebrospinal fluid in juvenile parkinsonism and Parkinson’s disease. Neurosci Lett 211(1):13–16

    Article  PubMed  CAS  Google Scholar 

  • Murphy VA, Wadhwani KC, Smith QR, Rapoport SI (1991) Saturable transport of manganese(II) across the rat blood–brain barrier. J Neurochem 57(3):948–954

    Article  PubMed  CAS  Google Scholar 

  • Nagy JI, Lee T, Seeman P, Fibiger HC (1978) Direct evidence for presynaptic and postsynaptic dopamine receptors in brain. Nature 274(5668):278–281

    Article  PubMed  CAS  Google Scholar 

  • National Institute for Occupational Safety and Health (NIOSH) (2003) Elements (ICP): Method 7303. In NIOSH manual of analytical methods. 4th edn, Issue 2, U.S. Department of Health and Human Services, Publication No. 2003–154. Washington, DC: NIOSH

  • Neff NH, Barrett RE, Costa E (1969) Selective depletion of caudate nucleus dopamine and serotonin during chronic manganese dioxide administration to squirrel monkeys. Experientia 25(11):1140–1141

    Article  PubMed  CAS  Google Scholar 

  • Nelson K, Golnick J, Korn T, Angle C (1993) Manganese encephalopathy: utility of early magnetic resonance imaging. Br J Ind Med 50:510–513

    PubMed  CAS  Google Scholar 

  • Nemmar A, Vanbilloen H, Hoylaerts MF, Hoet PHM, Verbruggen A, Nemery B (2001) Passage of intratracheally instilled ultrafine particles from the lung into the systemic circulation in hamster. Am J Respir Crit Care Med 164:1665–1668

    PubMed  CAS  Google Scholar 

  • Normandin L, Panisset M, Zayed J (2002) Manganese neurotoxicity: behavioral, pathological, and biochemical effects following various routes of exposure. Rev Environ Health 17:189–217

    PubMed  CAS  Google Scholar 

  • Oberdorster G, Sharp Z, Atudorei V, Elder A, Gelein R, Kreyling W, Cox C (2004) Translocation of inhaled ultrafine particles to the brain. Inhal Toxicol 16:437–445

    Article  PubMed  CAS  Google Scholar 

  • Oberdörster G, Sharp Z, Atudorei V, Elder A, Gelein R, Lunts A, Kreyling W, Cox C (2002) Extrapulmonary translocation of ultrafine carbon particles following whole-body inhalation exposure of rats. J Toxicol Environ Health A 65:1531–1543

    Article  PubMed  CAS  Google Scholar 

  • Occupational Outlook Handbook (OOH), 2008-09 Edition. U.S. Bureau of Labor Statistics Office of Occupational Statistics and Employment Projections, Washington, DC. http://www.bls.gov/OCO

  • Olanow CW (2004) Manganese-induced parkinsonism and Parkinson’s disease. Ann N Y Acad Sci 1012:209–223

    Article  PubMed  CAS  Google Scholar 

  • Olanow CW, Good PF, Shinotoh H, Hewitt KA, Vingerhoets F, Snow BJ, Beal MF, Calne DB, Perl DP (1996) Manganese intoxication in the rhesus monkey: a clinical, imaging, pathologic, and biochemical study. Neurology 46(2):492–498

    PubMed  CAS  Google Scholar 

  • Pal PK, Samii A, Calne DB (1999) Manganese neurotoxicity: a review of clinical features, imaging and pathology. Neurotoxicology 20(2–3):227–238

    PubMed  CAS  Google Scholar 

  • Park RM, Schulte PA, Bowman JD, Walker JT, Bondy SC, Yost MG, Touchstone JA, Dosemeci M (2005) Potential occupational risks for neurodegenerative diseases. Am J Ind Med 48(1):63–77

    Article  PubMed  CAS  Google Scholar 

  • Park J, Yoo CI, Sim CS, Kim JW, Yi Y, Shin YC, Kim DH, Kim Y (2006) A retrospective cohort study of Parkinson’s disease in Korean shipbuilders. Neurotoxicology 27(3):445–449

    Article  PubMed  CAS  Google Scholar 

  • Perl DP, Olanow CW (2007) The neuropathology of manganese-induced Parkinsonism. J Neuropathol Exp Neurol 66(8):675–682

    Article  PubMed  CAS  Google Scholar 

  • Rabin O, Hegedus L, Bourre JM, Smith QR (1993) Rapid brain uptake of manganese (II) across the blood–brain barrier. J Neurochem 61(2):509–517

    Article  PubMed  CAS  Google Scholar 

  • Rabinovic AD, Lewis DA, Hastings TG (2000) Role of oxidative changes in the degeneration of dopamine terminals after injection of neurotoxic levels of dopamine. Neuroscience 101(1):67–76

    Article  PubMed  CAS  Google Scholar 

  • Racette BA, McGee-Minnich L, Moerlein SM, Mink JW, Videen TO, Perlmutter JS (2001) Welding-related parkinsonism: clinical features, treatment, and pathophysiology. Neurology 56(1):8–13

    PubMed  CAS  Google Scholar 

  • Racette BA, Tabbal SD, Jennings D, Good L, Perlmutter JS, Evanoff B (2005) Prevalence of parkinsonism and relationship to exposure in a large sample of Alabama welders. Neurology 64(2):230–235

    PubMed  CAS  Google Scholar 

  • Reasor MJ, Antonini JM (2000) Pulmonary responses to single versus multiple intratracheal instillations of silica in rats. J Toxicol Environ Health 62:9–21

    Article  Google Scholar 

  • Rodier J (1955) Manganese poisoning in Moroccan miners. Br J Ind Med 12(1):21–35

    PubMed  CAS  Google Scholar 

  • Sadek AH, Rauch R, Schulz PE (2003) Parkinsonism due to manganism in a welder. Int J Toxicol 22(5):393–401

    PubMed  Google Scholar 

  • Sferlazza SJ, Beckett WS (1991) The respiratory health of welders. Am Rev Respir Dis 143:1134–1148

    PubMed  CAS  Google Scholar 

  • Shimada A, Kawamura N, Okajima M, Kaewamatawong T, Inoue H, Morita T (2006) Translocation pathway of the intratracheally instilled ultrafine particles from the lung into the blood circulation in the mouse. Toxicol Pathol 34(7):949–957

    Article  PubMed  Google Scholar 

  • Shinotoh H, Snow BJ, Hewitt KA, Pate BD, Doudet D, Nugent R, Perl DP, Olanow W, Calne DB (1995) MRI and PET studies of manganese-intoxicated monkeys. Neurology 45(6):1199–1204

    PubMed  CAS  Google Scholar 

  • Sistrunk SC, Ross MK, Filipov NM (2007) Direct effects of manganese compounds on dopamine and its metabolite Dopac: an in vitro study. Environ Toxicol Pharmacol 23(3):286–296

    Article  PubMed  CAS  Google Scholar 

  • Sjogren B, Gyntelberg F, Hilt B (2006) Ischemic heart disease and welding in Scandinavian studies. Scand J Work Environ Health 2:50–53

    Google Scholar 

  • Sjögren B, Fossum T, Lindh T, Weiner J (2002) Welding and ischemic heart disease. Int J Occup Environ Health 8(4):309–311

    PubMed  Google Scholar 

  • Skirboll LR, Grace AA, Bunney BS (1979) Dopamine auto- and postsynaptic receptors: electrophysiological evidence for differential sensitivity to dopamine agonists. Science 206:80–82

    Article  PubMed  CAS  Google Scholar 

  • Sloot WN, van der Sluijs-Gelling AJ, Gramsbergen JBP (1994) Selective lesions by manganese and extensive damage by iron after injection into rat striatum or hippocampus. J Neurochem 62:205–216

    Article  PubMed  CAS  Google Scholar 

  • Spadoni F, Stefani A, Morello M, Lavaroni F, Giacomini P, Sancesario G (2000) Selective vulnerability of pallidal neurons in the early phases of manganese intoxication. Exp Brain Res 135(4):544–551

    Article  PubMed  CAS  Google Scholar 

  • Sriram K, O’Callaghan JP (2005) Signaling mechanisms underlying toxicant-induced gliosis. In: Aschner M, Costa LG (eds) The role of glia in neurotoxicity, 2nd edn. CRC press, Boca Raton, FL, pp 141–171

    Google Scholar 

  • Sriram K, O’Callaghan JP (2007) Divergent roles for tumor necrosis factor-alpha in the brain. J Neuroimmune Pharmacol 2(2):140–153

    Article  PubMed  Google Scholar 

  • Sriram K, Pai KS, Boyd MR, Ravindranath V (1997) Evidence for generation of oxidative stress in brain by MPTP: in vitro and in vivo studies in mice. Brain Res 749(1):44–52

    Article  PubMed  CAS  Google Scholar 

  • Sriram K, Matheson JM, Benkovic SA, Miller DB, Luster MI, O’Callaghan JP (2002) Mice deficient in TNF receptors are protected against dopaminergic neurotoxicity: Implications for Parkinson’s disease. FASEB J 16(11):1474–1476

    PubMed  CAS  Google Scholar 

  • Sriram K, Miller DB, O’Callaghan JP (2006a) Minocycline attenuates microglial activation but fails to mitigate striatal dopaminergic neurotoxicity: role of tumor necrosis factor-alpha. J Neurochem 96(3):706–718

    Article  PubMed  CAS  Google Scholar 

  • Sriram K, Matheson JM, Benkovic SA, Miller DB, Luster MI, O’Callaghan JP (2006b) Deficiency of TNF receptors suppresses microglial activation and alters the susceptibility of brain regions to MPTP-induced neurotoxicity: Role of TNF-α. FASEB J 20:670–682

    Article  PubMed  CAS  Google Scholar 

  • Stampfer MJ (2009) Welding occupations and mortality from Parkinson’s disease and other neurodegenerative diseases among United States men, 1985–1999. J Occup Environ Hyg 6(5):267–272

    Article  PubMed  CAS  Google Scholar 

  • Stanwood GD, Leitch DB, Savchenko V, Wu J, Fitsanakis VA, Anderson DJ, Stankowski JN, Aschner M, McLaughlin B (2009) Manganese exposure is cytotoxic and alters dopaminergic and GABAergic neurons within the basal ganglia. J Neurochem 110(1):378–389

    Article  PubMed  CAS  Google Scholar 

  • Stone KC, Mercer RR, Gehr P, Stockstill B, Crapo JD (1992) Allometric relationships of cell numbers and size in the mammalian lung. Am J Respir Cell Mol Biol 6(2):235–243

    PubMed  CAS  Google Scholar 

  • Streit WJ, Walter SA, Pennell NA (1999) Reactive microgliosis. Prog Neurobiol 57(6):563–581

    Article  PubMed  CAS  Google Scholar 

  • Subramaniam RP, Richardson RB, Morgan KT, Guilmette RA, Kimbell JS (1998) Computational fluid dynamics simulations of inspiratory airflow in the human nose and nasopharynx. Inhal Toxicol 10:91–120

    Article  CAS  Google Scholar 

  • Takeda A, Sotogaku N, Oku N (2002) Manganese influences the levels of neurotransmitters in synapses in rat brain. Neuroscience 114(3):669–674

    Article  PubMed  CAS  Google Scholar 

  • Tanner CM, Ross GW, Jewell SA, Hauser RA, Jankovic J, Factor SA, Bressman S, Deligtisch A, Marras C, Lyons KE, Bhudhikanok GS, Roucoux DF, Meng C, Abbott RD, Langston JW (2009) Occupation and risk of parkinsonism: a multicenter case–control study. Arch Neurol 66(9):1106–1113

    Article  PubMed  Google Scholar 

  • Taylor MD, Roberts JR, Leonard SS, Shi X, Antonini JM (2003) Effects of welding fumes of differing composition and solubility on free radical production and acute lung injury and inflammation in rats. Toxicol Sci 75:181–191

    Article  PubMed  CAS  Google Scholar 

  • Tjälve H, Henriksson J (1999) Uptake of metals in the brain via olfactory pathways. Neurotoxicology 20(2–3):181–195

    PubMed  Google Scholar 

  • Tjälve H, Henriksson J, Tallkvist J, Larsson BS, Lindquist NG (1996) Uptake of manganese and cadmium from the nasal mucosa into the central nervous system via olfactory pathways in rats. Pharmacol Toxicol 79(6):347–356

    Article  PubMed  Google Scholar 

  • Tomas-Camardiel M, Herrera AJ, Venero JL, Cruz-Sanchez-Hidalgo M, Cano J, Machado A (2002) Differential regulation of glutamic acid decarboxylase mRNA and tyrosine hydroxylase mRNA expression in the aged manganese-treated rats. Mol Brain Res 103:116–129

    Article  PubMed  CAS  Google Scholar 

  • Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76(9):4350–4354

    Article  PubMed  CAS  Google Scholar 

  • Wang XS, Ong WY, Connor JR (2001) A light and electron microscopic study of the iron transporter protein DMT-1 in the monkey cerebral neocortex and hippocampus. J Neurocytol 30(4):353–360

    Article  PubMed  Google Scholar 

  • Wennberg A, Iregren A, Struwe G, Cizinsky G, Hagman M, Johansson L (1991) Manganese exposure in steel smelters a health hazard to the nervous system. Scand J Work Environ Health 17(4):255–262

    PubMed  CAS  Google Scholar 

  • Zhang S, Fitsanakis VA, Gu G, Jing D, Ao M, Amarnath V, Montine TJ (2003) Manganese ethylene-bis-dithiocarbamate and selective dopaminergic neurodegeneration in rat: a link through mitochondrial dysfunction. J Neurochem 84:336–346

    Article  PubMed  CAS  Google Scholar 

  • Zhang P, Wong TA, Lokuta KM, Turner DE, Vujisic K, Liu B (2009) Microglia enhance manganese chloride-induced dopaminergic neurodegeneration: role of free radical generation. Exp Neurol 217(1):219–230

    Article  PubMed  CAS  Google Scholar 

  • Zhao F, Cai T, Liu M, Zheng G, Luo W, Chen J (2009) Manganese induces dopaminergic neurodegeneration via microglial activation in a rat model of manganism. Toxicol Sci 107(1):156–164

    Article  PubMed  CAS  Google Scholar 

  • Zimmer AT, Biswas P (2001) Characterization of the aerosols resulting from arc welding processes. J Aerosol Sci 32:993–1008

    Article  CAS  Google Scholar 

Download references

Conflict of interest statement

The authors declare they have no proprietary, financial or personal interest of any kind or nature in any samples, products, supplies, service or company that could be construed as being a conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishnan Sriram.

Additional information

Disclaimer

The findings and conclusions of this paper have not been formally disseminated by NIOSH and should not be construed to represent any agency determination or policy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sriram, K., Lin, G.X., Jefferson, A.M. et al. Dopaminergic neurotoxicity following pulmonary exposure to manganese-containing welding fumes. Arch Toxicol 84, 521–540 (2010). https://doi.org/10.1007/s00204-010-0525-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-010-0525-9

Keywords

Navigation