Skip to main content
Log in

Effects of subchronic perfluorooctane sulfonate exposure of rats on calcium-dependent signaling molecules in the brain tissue

  • Molecular Toxicology
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Perfluorooctane sulfonate (PFOS) is a persistent and bio-accumulative pollutant ubiquitous in wildlife and humans, which receives many concerns on the fate, transport, distribution, and toxicity. Studies have shown that PFOS-induced neurotoxicity in experimental animals; however, little is known about the potential mechanism of PFOS exposure on the central nervous system (CNS). Ca2+/calmodulin-dependent protein kinase IIα (CaMKIIα), cAMP-response element binding protein (CREB), c-fos, and c-jun, which are important down-stream molecules of calcium signaling in describing neuron cells structure and function in the CNS, were examined in the paper with the purpose to evaluate the effect of PFOS exposure on brain and approach the molecular mechanisms involved in the neurotoxicity induced by PFOS. Adult male Sprague–Dawley rats were administered with PFOS at dosages of 1.7, 5.0, and 15.0 mg/L in drinking water for 91 consecutive days. LC/MS was used for PFOS analysis in brain tissues, and western blot was employed to determine the expression of CaMKIIα and pCREB in the isolated cortex and hippocampus. The expression of c-fos and c-jun was detected by real-time reverse transcription polymerase chain reaction. The results showed that the expression of CaMKIIα and pCREB exhibits a significant increase in cortex and hippocampus after treatment with PFOS, compared with the control. The transcription factor c-fos was up-regulated in hippocampus, and c-jun was elevated both in cortex and hippocampus in PFOS-treated groups. These results indicated that, at least in part, the neurotoxic effect induced by PFOS is mediated by the Ca2+-dependent molecules in calcium signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Austin ME, Kasturi BS, Barber M, Kannan K, MohanKumar PS, MohanKumar SMJ (2003) Neuroendocrine effects of perfluorooctane sulfonate in rats. Environ Health Perspect 111:1485–1489

    CAS  PubMed  Google Scholar 

  • Barsanti JA, Duncan JR (1977) A rapid, sensitive, and versatile assay for protein using Coomassie brilliant blue G250. Anal Biochem 79:544–552

    Article  Google Scholar 

  • Costa LG, Giordano G (2007) Developmental neurotoxicity of polybrominated diphenyl ether (PBDE) flame retardants. Neurotoxicology 28:1047–1067

    Article  CAS  PubMed  Google Scholar 

  • Curtis J, Finkbeiner S (1999) Sending signals from the synapse to the nucleus: possible roles for CaMK, Ras/ERK, and SAPK pathways in the regulation of synaptic plasticity and neuronal growth. J Neurosci Res 58:88–95

    Article  CAS  PubMed  Google Scholar 

  • Defelipe C, Hunt SP (1994) The differential control of c-jun expression in regenerating sensory neurons and their associated glial cell. J Neurosci 14:2911–2923

    CAS  Google Scholar 

  • Fuentes S, Vicens P, Colomina MT, Domingo JL (2007) Behavioral effects in adult mice exposed to perfluorooctane sulfonate (PFOS). Toxicology 242:123–129

    Article  CAS  PubMed  Google Scholar 

  • Fueta Y, Fukunaga K, Ishidao T, Hori H (2002) Hyperexcitability and changes in activities of Ca2+/calmodulin-dependent kinase II and mitogen-activated protein kinase in the hippocampus of rats exposed to 1-bromopropane. Life Sci 72:521–529

    Article  CAS  PubMed  Google Scholar 

  • Hansen KJ, Clemen LA, Ellefson ME, Johnson HO (2001) Compound-specific, quantitative characterization of organic fluorochemicals in biological matrices. Environ Sci Technol 35:766–770

    Article  CAS  PubMed  Google Scholar 

  • Harada KH, Xu F, Ono K, Iijima T, Koizumi A (2005) Effects of PFOS and PFOA on L-type Ca2+ currents in guinea-pig ventricular myocytes. Biochem Biophys Res Commun 329:487–494

    Article  CAS  PubMed  Google Scholar 

  • Harada KH, Ishii TM, Takatsuka K, Koizumi A, Ohmori H (2006) Effects of perfluorooctane sulfonate on action potentials and currents in cultured rat cerebellar Purkinje cells. Biochem Biophys Res Commun 351:240–245

    Article  CAS  PubMed  Google Scholar 

  • Harada KH, Hashida S, Kaneko T, Takenaka K, Minata M, Inoue K, Saito N, Koizumi A (2007) Biliary excretion and cerebrospinal fluid partition of perfluorooctanoate and perfluorooctane sulfonate in humans. Environ Toxicol Pharmacol 24:134–139

    Article  CAS  Google Scholar 

  • Hayashi M, Ueyama T, Nemoto K, Tamaki T, Senba E (2000) Sequential mRNA expression for immediate early genes, cytokines, and neurotrophins in spinal cord injury. J Neurotrauma 17:203–218

    Article  CAS  PubMed  Google Scholar 

  • Herschman HR (1991) Primary response genes induced by growth factors and tumor promoters. Annu Rev Biochem 60:281–319

    Article  CAS  PubMed  Google Scholar 

  • Inglefield JR, Mundy WR, Meacham CA, Shafer TJ (2002) Identification of calcium-dependent and -independent signaling pathways involved in polychlorinated biphenyl-induced cyclic AMP-responsive element-bind protein phosphorylation in developing cortical neurons. Neuroscience 115:559–573

    Article  CAS  PubMed  Google Scholar 

  • Johansson N, Fredriksson A, Eriksson P (2007) Neonatal exposure to perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) causes neurobehavioural defects in adult mice. Neurotoxicology 29:160–169

    Article  PubMed  Google Scholar 

  • Johansson N, Fredriksson A, Eriksson P (2009) Neonatal exposure to PFOS and PFOA in mice results in changes in proteins which are important for neuronal growth and synaptogenesis in the developing brain. Toxicol Sci 108:412–418

    Article  CAS  PubMed  Google Scholar 

  • Kannan K, Koistinen J, Beckmen K, Evans T, Gorzelany JF, Hansen KJ, Jones PD, Helle E, Nyman M, Giesy JP (2001) Accumulation of perfluorooctane sulfonate in marine mammals. Environ Sci Technol 35:1593–1598

    Article  CAS  PubMed  Google Scholar 

  • Kenney AM, Kocsis JD (1998) Peripheral axotomy induces long-term c-Jun amino-terminal kinase-1 activation and activator protein-1 binding activity by c-Jun and junD in adult rat dorsal root ganglia in vivo. J Neurosci 18:1318–1328

    CAS  PubMed  Google Scholar 

  • Lau C, Butenhoff JL, Rogers JM (2004) The developmental toxicity of perfluoroalkyl acids and their derivatives. Toxicol Appl Pharmacol 198:231–241

    Article  CAS  PubMed  Google Scholar 

  • Lau C, Anitole K, Hodes C, Lai D, Pfahles-Hutchens A, Seed J (2007) Perfluoroalkyl acids: a review of monitoring and toxicological findings. Toxicol Sci 99:366–394

    Article  CAS  PubMed  Google Scholar 

  • Lehmler HJ (2005) Synthesis of environmentally relevant fluorinated surfactants—a review. Chemosphere 58:1471–1496

    Article  CAS  PubMed  Google Scholar 

  • Liao CY, Li XY, Wu B, Duan S, Jiang GB (2008) Acute enhancement of synaptic transmission and chronic inhibition of synaptogenesis induced by perfluorooctane sulfonate through mediation of voltage-dependent calcium channel. Environ Sci Technol 42:5335–5341

    Article  CAS  PubMed  Google Scholar 

  • Liao CY, Cui L, Zhou QF, Duan SM, Jiang GB (2009) Effects of perfluorooctane sulfonate on ion channels and glutamate-activated current in cultured rat hippocampal neurons. Environ Toxicol Pharmacol 27:338–344

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lonze BE, Ginty DD (2002) Function and regulation of CREB family transcription factor in the nervous system. Neuron 35:605–623

    Article  CAS  PubMed  Google Scholar 

  • Matsubara E, Harada K, Inoue K, Koizumi A (2006) Effects of perfluorinated amphiphiles on backward swimming in Paramecium caudatum. Biochem Biophys Res Commun 339:554–561

    Article  CAS  PubMed  Google Scholar 

  • OECD (2002) Hazard assessment of perfluorooctane sulfonate and its salts. Available from: http://www.oecd.org/dataoecd/23/18/2382880.pdf

  • Schuh RA, Kristian T, Gupta RK, Flaws JA, Fiskum G (2005) Methoxychlor inhibits brain mitochondrial respiration and increases hydrogen peroxide production and CREB phosphorylation. Toxicol Sci 88:495–504

    Article  CAS  PubMed  Google Scholar 

  • Seacat AM, Thomford PJ, Hansen KJ, Clemen LA, Eldridge SR, Elcombe CR, Butenhoff JL (2003) Sub-chronic dietary toxicity of potassium perfluorooctane sulfonate in rats. Toxicology 183:117–131

    Article  CAS  PubMed  Google Scholar 

  • Shimokawa N, Miyazaki W, Iwasaki T, Koibuchi N (2006) Low dose hydroxylated PCB induces c-Jun expression in PC12 cells. Neurotoxicology 27:176–183

    Article  CAS  PubMed  Google Scholar 

  • Soderling TR, Fukunaga K, Rich DP, Fong YL, Smith K, Colbran RJ (1990) Regulation of brain Ca2+/calmodulin-dependent protein kinase II. Adv Second Messenger Phosphoprotein Res 24:206–211

    CAS  PubMed  Google Scholar 

  • Sun DQ, Li AW, Ju L, Dian GL, Yi XL, Hao F, Ming ZG (2009) Changes of lipid peroxidation in carbon disulfide-treated rat nerve tissues and serum. Chem Biol Interact 179:110–117

    Article  CAS  PubMed  Google Scholar 

  • Tang FG, Yan CH, Wu SH, Li F, Yu YG, Gao Y, Jin XM, Shen XM (2007) Polychlorinated biphenyls disrupt the actin cytoskeleton in hippocampal neurons. Environ Toxicol Pharmacol 23:140–146

    Article  CAS  Google Scholar 

  • Wang QS, Hou LY, Zhang CL, Zhao XL, Yu SF, Xie KQ (2008) 2, 5-Hexanedione (HD) treatment alters Calmodulin, Ca2+/calmodulin-dependent protein kinase II, protein kinase C in rats nerve tissues. Toxicol Appl Pharmacol 232:60–68

    Article  CAS  PubMed  Google Scholar 

  • Wilhelm M, Hölzer J, Dobler L, Rauchfuss K, Midasch O, Kraft M, Angerer J, Wiesmüller G (2009) Preliminary observations on perfluorinated compounds in plasma samples (1977–2004) of young German adults from an area with perfluorooctanoate-contaminated drinking water. Int J Hyg Environ Health 212:142–145

    Article  CAS  PubMed  Google Scholar 

  • Wilmarth KR, Viana ME, Abou-Donia MB (1993) Carbon disulfide inhalation increases Ca2+/calmodulin-dependent kinase phosphorylation of cytoskeletal proteins in the rat central nervous system. Brain Res 628:293–300

    Article  CAS  PubMed  Google Scholar 

  • Wu AG, Liu YG (2003) Prolonged expression of c-Fos and c-Jun in the cerebral cortex of rats after deltamethrin treatment. Mol Brain Res 110:147–151

    Article  CAS  PubMed  Google Scholar 

  • Young W (1992) Role of calcium in central nervous system injuries. J Neurotrauma 9:S9–S25

    PubMed  Google Scholar 

  • Yu WG, Liu W, Jin YH (2009) Effects of perflurooctane sulfonate on rat thyroid hormone biosynthesis and metabolism. Environ Toxicol Chem 28:990–996

    Article  CAS  PubMed  Google Scholar 

  • Zuo ZH, Cai JL, Wang XL, Li BW, Wang CG, Chen YX (2009) Acute administration of tributyltin and trimethyltin modulate glutamate and N-methyl-d-aspartate receptor signaling pathway in Sebastiscus marmoratus. Aquat Toxicol 92:44–49

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank National Nature Science Foundation of China (No.20837004 and No.30771772) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yihe Jin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, X., Liu, W., Jin, Y. et al. Effects of subchronic perfluorooctane sulfonate exposure of rats on calcium-dependent signaling molecules in the brain tissue. Arch Toxicol 84, 471–479 (2010). https://doi.org/10.1007/s00204-010-0517-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-010-0517-9

Keywords

Navigation