Skip to main content

Advertisement

Log in

Dectin-1 and inflammation-associated gene transcription and expression in mouse lungs by a toxic (1,3)-β-d glucan

  • Organ Toxicity and Mechanisms
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

The form of (1-3)-β-d glucan found in the cell walls of the anamorphic Trichocomaceae that grow on damp building materials is considered to have potent toxic and inflammatory effects on cells of the respiratory system. It is also considered to have a potential role in the development of non-allergenic respiratory health effects. While human studies involving experimental exposures all point to the inflammatory potential of pure curdlan, a linear (1-3)-β-d glucan in a triple helix configuration, animal experiments result in conflicting conclusions concerning the inflammatory potency of this glucan. However, because mice appear to be a better model than guinea pigs for exploring the respiratory effects of curdlan and because molecular mechanisms associated with this glucan remain largely unknown, we conducted further work to clarify the role of curdlan on the inflammatory response using our mouse model of lung disease. This study used in situ hybridization (ISH) to probe dectin-1 mRNA transcription with a digoxigenin-labeled cDNA probe, with reverse transcription (RT)-PCR based arrays used to measure inflammation gene and receptor transcriptional responses. Also, immunohistochemistry (IHC) was used to probe dectin-1 as well as anti-mouse Ccl3, Il1-alpha, and TNF-alpha expression to evaluate dose and time-course (4 and 12 h) postexposure (PE) response patterns in the lungs of intratracheally instilled mice exposed to a single 50 μl dose of curdlan at 10−7, 10−8, 10−9, and 10−10 M/animal (=4 μg to 4 ng curdlan/kg lung wt). Dectin-1 mRNA transcription and expression was observed in bronchiolar epithelium, alveolar macrophages (AMs), and alveolar type II cells (ATIIs) of lungs exposed to 4 μg to 40 ng curdlan/kg lung wt, at both time points. Compared to controls, array analysis revealed that 54 of 83 genes assayed were significantly modulated by curdlan. mRNA transcription patterns showed both dose and time dependency, with highest transcription levels in 10−7 and 10−8 M treatment animals, especially at 4-h PE. Nine gene mRNA transcripts (Ccl3, Ccl11, Ccl17, Ifng, Il1α, Il-20, TNF-α, Tnfrsf1b, and CD40lg) were significantly expressed at all doses suggesting they may have a central role in immunomodulating curdlan exposures. IHC revealed Ccl3, Il1-alpha, and TNF-alpha expression in bronchiolar epithelium, AMs and ATIIs illustrate the important immunomodulatory role that these cells have in the recognition of, and response to glucan. Collectively, these results confirm the inflammatory nature of curdlan and demonstrate the complex of inflammation-associated gene responses induced by (1-3)-β-d glucan in triple helical forms. These observations also provide a biological basis for the irritant and inflammatory response to curdlan observed in humans and animals in experimental studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allen MJ, Voelker DR, Mason RJ (2001) Interactions of surfactant proteins A and D with Saccharomyces cerevisiae and Aspergillus fumigatus. Infect Immun 69:2037–2044

    Article  CAS  PubMed  Google Scholar 

  • Bonlokke JH, Stridh G, Sigsgaard T, Kjaergaard SK, Lofsted H, Andersson K, Bonefeld-Jorgensen EC, Jayatissa MN, Bodin L, Juto J-E, Molhave L (2006) Upper-airway inflammation in relation to dust spiked with aldehydes or glucan. Scand J Work Environ Health 32:374–382

    PubMed  Google Scholar 

  • Brown GD, Gordon S (2001) Immune recognition. A new receptor for beta-glucans. Nature 413:36–37

    Article  CAS  PubMed  Google Scholar 

  • Brown JS, Wilson WE, Grant LD (2005) Dosimetric comparisons of particle deposition and retention in rats and humans. Inhal Toxicol 17:355–385

    Article  CAS  PubMed  Google Scholar 

  • CCAC (1993) Guide to the care and use of experimental animals, vol 1. Bradda Printing Services, Ottawa

    Google Scholar 

  • Cox-Ganser JM, White SK, Jones R, Hilsbos K, Storey E, Enright PL, Rao CY, Kreiss K (2005) Respiratory morbidity in office workers in a water-damaged building. Environ Health Perspect 113:485–490

    Article  PubMed  Google Scholar 

  • Didierlaurent A, Brissoni B, Velin D, Aebi N, Tardivel A, Käslin E, Sirard JC, Angelov G, Tschopp J, Burns K (2006) Tollip regulates pro-inflammatory responses to interleukin-1 and lipopolysaccharide. Mol Cell Biol 26:735–742

    Article  CAS  PubMed  Google Scholar 

  • Doucette C, Giron-Michel J, Canonica GW, Azzarone B (2002) Human lung myofibroblasts as effectors of the inflammatory process: the common receptor λ chain is induced by Th2 cytokines, and CD40 ligand is induced by lipopolysaccharide, thrombin and TNF-α. Eur J Immunol 32:2437–2449

    Article  Google Scholar 

  • Douwes J (2005a) Health effects of 1, 3 β glucans: the epidemiological evidence. In: Young S–H, Castranova V (eds) Toxicology of (1–3)-beta-d-glucans. CRC Press, Boca Raton, pp 35–52

    Google Scholar 

  • Douwes J (2005b) (1–3)-beta-d-glucans and respiratory health: a review of the scientific literature. Indoor Air 15:160–169

    Article  CAS  PubMed  Google Scholar 

  • Elizur A, Adair-Kirk TL, Kelley DG, Griffin GL, de Mello DE, Senior RM (2008) Tumor necrosis factor -α from macrophages enhances LPS-induced Clara cell expression of keratinocyte-derived chemokine. Am J Respir Cell Mol Biol 38:8–15

    Article  CAS  PubMed  Google Scholar 

  • Ferwerda G, Meyer-Wentrup F, Kullberg B-J, Netea MG, Adema GJ (2008) Dectin-1 synergizes with TLR2 and TLR4 for cytokine production in human primary monocytes and macrophages. Cell Microbiol 10:2058–2066

    Article  CAS  PubMed  Google Scholar 

  • Fogelmark B, Goto H, Yuasa K, Marchat B, Rylander R (1992) Acute pulmonary toxicity of inhaled beta-1,3-glucan and endotoxin. Agents Actions 35:50–56

    Article  CAS  PubMed  Google Scholar 

  • Fogelmark B, Sjostrand M, Williams D, Rylander R (1997) Inhalation toxicity of (1, 3)-β-d-glucan: recent advances. Mediators Inflamm 6:263–265

    Article  CAS  PubMed  Google Scholar 

  • Foto M, Plett J, Berghout J, Miller JD (2004) Modification of the Limulus Amebocyte Lysate assay for the analysis of glucan in indoor environments. Anal Bioanal Chem 379:156–162

    Article  CAS  PubMed  Google Scholar 

  • Foto M, Vrijmoed LLP, Miller JD, Ruest K, Lawton M, Dales RE (2005) Comparison of airborne ergosterol, glucan and Air-O-Cell data in relation to physical assessments of mold damage and some other parameters. Indoor Air 15:257–266

    Article  CAS  PubMed  Google Scholar 

  • Furuzawa M, Kuwahara M, Ishii K, Iwakura Y, Tsubone H (2002) Diurnal variation of heart rate, locomotor activity, and body temperature in interleukin-1α/β doubly deficient mice. Exp Anim 51:49–56

    Article  CAS  PubMed  Google Scholar 

  • Gregory L, Pestka JJ, Dearborn D, Rand TG (2004) Localization of satratoxin-G in Stachybotrys chartarum spores and spore-impacted mouse lung tissues using immunocytochemistry. Toxicol Path 32:26–34

    Article  CAS  Google Scholar 

  • Happerfield LC, Echezarreta G, Gillett CG (1996) Assessment of oestrogen and progesterone receptor antibodies in formalin-fixed routinely processed paraffin-wax embedded tissue. J Clin Pathol 1:170–178

    Google Scholar 

  • Health Canada (2004) Fungal contamination in public buildings: health effects and investigation methods. Health Canada, Ottawa, Ontario. ISBN 0-662-37432-0

  • Hernandez-Novoa B, Bishop L, Logun C, Munson PJ, Elnekave E, Rangel ZG, Barb J, Danner RL, Kovacs JA (2008) Immune responses to Pneumocystis murina are robust in healthy mice but largely absent in CD40 ligand- deficient mice. J Leukoc Biol 84:420–430

    Article  CAS  PubMed  Google Scholar 

  • Holck P, Sletmoen M, Stokke BT, Permin H, Norn S (2007) Potentiation of histamine release by microfungal (1, 3)- and (1, 6)-β-d-glucans. Basic Clin Pharm Toxicol 101:455–458

    Article  CAS  Google Scholar 

  • Huaux F, Gharaee-Kermani M, Liu T, Morel V, McGarry B, Ullenbruch M, Kunkel SL, Wang J, Xing Z, Phan SH (2005) Role of Eotaxin-1 (CCL11) and CC chemokine receptor 3 (CCR3) in bleomycin-induced lung injury and fibrosis. Am J Pathol 167:1485–1496

    CAS  PubMed  Google Scholar 

  • Ishida Y, Kimura A, Kondo T, Hayashi T, Ueno M, Takakura N, Matsushima K, Mukaida N (2007) Essential roles of the CC chemokine ligand 3-CC chemokine receptor 5 axis in bleomycin-induced pulmonary fibrosis through regulation of macrophage and fibrocyte infiltration. Am J Pathol 170:843–854

    Article  CAS  PubMed  Google Scholar 

  • Jeyaseelan S, Chu HW, Young SK, Worthen GS (2004) Transcriptional profiling of lipopolysaccharide-induced acute lung injury. Infect Immun 72:7247–7256

    Article  CAS  PubMed  Google Scholar 

  • Jowett T (1997) Tissue in situ hybridization: methods in animal development. John Wiley, New York

    Google Scholar 

  • Kataoka K, Muta T, Yamazaki S, Takeshige K (2002) Activation of macrophages by linear (1→3)-β-d-glucans. Implications for the recognition of fungi by innate immunity. J Biol Chem 277:36825–36831

    Article  CAS  PubMed  Google Scholar 

  • Kaufman J, Sime PJ, Phipps RP (2004) Expression of CD154 (CD40 ligand) by human lung fibroblasts: differential regulation by IFN-λ and IL-13, and implications for fibrosis. J Immunol 172:1862–1871

    CAS  PubMed  Google Scholar 

  • Kelly MM, McNagny K, Williams DL, van Rooijen N, Maxwell L, Gwozd C, Mody CH, Kubes P (2008) The lung responds to zymosan in a unique manner independent of toll-like receptors, complement, and dectin-1. Am J Respir Cell Mol Biol 38:227–238

    Article  CAS  PubMed  Google Scholar 

  • Kelsen SG, Aksoy MO, Yang Y, Shahabuddin S, Litvin J, Safadi F, Rogers TJ (2004) The chemokine receptor CXCR3 and its splice variant are expressed in human airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 287:584–591

    Article  Google Scholar 

  • Kleinstreuer C, Zhang Z, Kim CS (2007) Combined inertial and gravitational deposition of microparticles in small model airways of the human respiratory system. J Aerosol Sci 38:1047–1061

    Article  CAS  Google Scholar 

  • Kleinstreuer C, Zhang Z, Li Z (2008) Modeling airflow and particle transport/deposition in pulmonary airways. Resp Physiol Neurobiol 163:128–138

    Article  Google Scholar 

  • Lloyd C (2002) Chemokines in allergic lung disease. Immunology 105:144–154

    Article  CAS  PubMed  Google Scholar 

  • Mason CD, Rand TG, Oulton M, MacDonald HM, Scott JE (1998) Effects of Stachybotrys chartarum (atra) conidia and isolated toxin on lung surfactant production and homeostasis. Nat Toxins 6:27–33

    Article  CAS  PubMed  Google Scholar 

  • Mason C, Rand TG, Oulton M, MacDonald J (2001) The effect of Stachybotrys chartarum spores and an isolated trichothecene, isosatratoxin F, on convertase activity in mice. Toxicol Appl Pharmacol 172:21–28

    Article  CAS  PubMed  Google Scholar 

  • Miller JD, Rand TG, Jarvis BB (2003) Stachybotrys chartarum: cause of human disease or media darling? Med Mycol 41:271–291

    Article  CAS  PubMed  Google Scholar 

  • Murphy K, Travers P, Walport M (2008) Janeway’s immunobiology. Garland science. Taylor & Francis, New York

    Google Scholar 

  • Murray HM, Gallant JW, Perez-Casanova JC, Johnson SC, Douglas SE (2003) Ontogeny of lipase expression in winter flounder. J Fish Biol 62:816–833

    Article  CAS  Google Scholar 

  • National Academy of Sciences (2004) Damp indoor air spaces and health. National Academies Press, Washington, DC

    Google Scholar 

  • Ohkawara Y, Lei XF, Stampfli MR, Marshall JS, Xing Z, Jordana M (2005) Cytokine and eosinophil responses in the lung, peripheral blood, and bone marrow compartments in a murine model of allergen-induced airways inflammation. Am J Respir Crit Care Med 16:510–520

    Google Scholar 

  • Ohno N, Miura T, Miura NN, Adachi Y, Yadomae T (2001) Structure and biological activities of hypochlorite oxidized zymosan. Carbohydr Polym 44:339–349

    Article  CAS  Google Scholar 

  • Palma AS, Feizi T, Zhang Y, Stoll MS, Lawson AM, Diaz-Rodriguez E, Campanero-Rhodes MA, Costa J, Gordon S, Brown GD, Chai W (2006) Ligands for the β-glucan receptor, dectin-1, assigned using “designer” microarrays of oligosaccharide probes (Neoglycolipids) generated from glucan polysaccharides. J Biol Chem 281:5771–5779

    Article  CAS  PubMed  Google Scholar 

  • Pease JE, Sabroe I (2002) The role of interleukin-8 and its receptors in inflammatory lung disease: implications for therapy. Am J Respir Med 1:19–25

    CAS  PubMed  Google Scholar 

  • Phalen RF, Oldham MJ, Wolff RK (2008) The relevance of animal models for aerosol studies. J Aerosol Med Pulm Drug Deliv 21:113–124

    Article  PubMed  Google Scholar 

  • Rand TG, Miller JD (2008) Immunohistochemical and immunocytochemical detection of Sch34 antigen in Stachybotrys chartarum spores and spore impacted mouse lungs. Mycopathologia 165:73–80

    Article  CAS  PubMed  Google Scholar 

  • Rand TG, Giles S, Flemming J, Miller JD, Puniani E (2005) Inflammatory and cytotoxic responses in mouse lungs exposed to purified toxins from building isolated Penicillium brevicompactum Dierckx and P. chrysogenum Thom. Toxicol Sci 87:213–222

    Article  CAS  PubMed  Google Scholar 

  • Rand TG, Flemming J, Miller JD, Womiloju T (2006) Inflammatory and cytotoxic responses in mouse lungs toward atranones A and C from Stachybotrys chartarum. J Toxicol Environ Health A 69:1239–1251

    Article  CAS  PubMed  Google Scholar 

  • Reid DM, Montoya M, Taylor PR, Borrow P, Gordon S, Brown GD, Wong SYC (2004) Expression of the β-glucan receptor, dectin-1, on murine leukocytes in situ correlates with its function in pathogen recognition and reveals potential roles in leukocyte interactions. J Leukoc Biol 76:86–94

    Article  CAS  PubMed  Google Scholar 

  • Reponen T, Seo S-C, Grimsley F, Lee T, Crawford C, Grinshpun SA (2007) Fungal fragments in mouldy houses: a field study in homes in New Orleans and southern Ohio. Atmos Environ 41:8140–8149

    Article  CAS  PubMed  Google Scholar 

  • Rylander R (1993) Experimental exposures to 1, 3 beta d glucan. ASHRAE Trans 1993:338–340

    Google Scholar 

  • Rylander R (1996) Airway responsiveness and chest symptoms after inhalations of endotoxin or (1, 3) beta d glucan. Indoor Built Environ 5:106–111

    Article  CAS  Google Scholar 

  • Rylander R, Lin RH (2000) (1, 3) beta-d-glucan—relationship to indoor air related symptoms, allergy and asthma. Toxicology 152:47–52

    Article  CAS  PubMed  Google Scholar 

  • Rylander R, Persson K, Goto H, Yuasa K, Shigenori T (1992) Airborne bet-1-3 glucan may be related to symptoms in sick buildings. Indoor Environ 1:263–267

    Article  CAS  Google Scholar 

  • Salares VR, Hinde CA, Miller JD (2009) Analysis of settled dust in homes and fungal glucan in air particulate collected during HEPA vacuuming. Indoor Built Environ (in press)

  • Sambrook J, Fritch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring laboratory Press, NY

  • Schuyler M, Gott K, Cherne A (1998) Effect of glucan on murine lungs. J Toxicol Environ Health A 53:493–505

    Article  CAS  PubMed  Google Scholar 

  • Sigsgaard T, Bonefeld-Jorgensen EC, Kjaergaard SK, Mamas S, Pedersen OF (2000) Cytokine release from the nasal mucosa and whole blood after experimental exposures to organic dusts. Eur Respir J 16:140–145

    Article  CAS  PubMed  Google Scholar 

  • Sjostrand M, Rylander R (1997) Pulmonary cell infiltration after chronic exposure to (1, 3) beta-d-glucan and cigarette smoke. Inflamm Res 46:93–97

    CAS  PubMed  Google Scholar 

  • Sorenson WG, Shahan TA, Simpson J (1998) Cell wall preparations from environmental yeasts: effect on alveolar macrophage function in vitro. Ann Agric Environ Med 5:65–71

    CAS  PubMed  Google Scholar 

  • Steele C, Rapaka RR, Metz A, Pop SM, Williams DL, Gordon S, Kolls JK, Brown GD (2005) The beta-glucan receptor dectin-1 recognizes specific morphologies of Aspergillus fumigatus. Pathogens 1:323–334

    CAS  Google Scholar 

  • Straszek SP, Adamcakova-Dodd A, Metwali N, Pedersen OF, Sigsgaard T, Thorne PS (2007) Acute effect of glucan-spiked office dust on nasal and pulmonary inflammation in guinea pigs. J Toxicol Environ Health A 70:1923–1928

    Article  CAS  PubMed  Google Scholar 

  • Suzaki Y, Hamada K, Nomi T, Ito T, Sho M, Kai Y, Nakajima Y, Kimura H (2008) A small-molecule compound targeting CCR5 and CXCR3 prevents airway hyper-responsiveness and inflammation. Eur Respir J 31:783–789

    Article  CAS  PubMed  Google Scholar 

  • Tanaka S, Aketagawa J, Takahashi S, Shibata Y (1991) Activation of limulus coagulation factor G by (1, 3) beta d glucans. Carbohydr Res 218:167–174

    Article  CAS  Google Scholar 

  • Taylor PR, Tsoni VS, Willment JA, Dennehy KM, Rosas M, Findon H, Haynes K, Steele C, Botto M, Gordon S, Brown GD (2006) Dectin-1 is required for glucan recognition and control of fungal infection. Nat Immunol 8:31–38

    Article  PubMed  CAS  Google Scholar 

  • Torrelles JB, Azad AK, Henning LN, Carlson TK, Schlesinger LS (2008) Role of C-type lectins in mycobacterial infections. Curr Drug Targets 9:102–112

    Article  CAS  PubMed  Google Scholar 

  • Vassallo R, Standing JE, Limper AH (2000) Isolated Pneumocystis carinii cell wall glucan provokes lower respiratory tract inflammatory responses. J Immunol 164:3755–3763

    CAS  PubMed  Google Scholar 

  • Willment JA, Gordon S, Brown G (2001) Characterization of the human beta-glucan receptor and its alternatively spliced isoforms. J Biol Chem 276:43818–43823

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, Marshall JS (2009) Zymosan treatment of mouse mast cells enhances dectin-1 expression and induces dectin-1-dependent reactive oxygen species (ROS) generation. Immunobiology 214:321–330

    Article  CAS  PubMed  Google Scholar 

  • Young S–H, Robinson VA, Barger M, Porter DW, Frazer DG, Castranova V (2001) Acute inflammation and recovery in rats after intratracheal instillation of a 1,3-beta-glucan (zymosan A). J Toxicol Environ Health A 64:311–325

    Article  CAS  PubMed  Google Scholar 

  • Young S–H, Robinson VA, Barger M, Frazer DG, Castranova V, Jacobs RR (2003a) Partially opened triple helix is the biologically active conformation of 1,3-beta-glucans that induces pulmonary inflammation in rats. J Toxicol Environ Health A 66:551–563

    Article  CAS  PubMed  Google Scholar 

  • Young S–H, Robinson V, Barger M, Whitmer M, Porter D, Frazer D, Castranova V (2003b) Exposure to particulate 1,3 beta glucans induces greater pulmonary toxicity than soluble 1,3 beta glucans in rats. J Toxicol Environ Health A 66:25–38

    Article  CAS  PubMed  Google Scholar 

  • Young S–H, Roberts JR, Antonini JM (2006) Pulmonary exposure to 1 → 3 -β-glucan alters adaptive immune responses in rats. Inhal Toxicol 18:865–874

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank J. Gallant, C. Leggiadro, J. Monholland, and C. Murphy, NRC Institute of Marine Biosciences, Halifax, Nova Scotia for assistance and excellent technical support. Additionally, we thank Dr. G. Sun for use of the RT–PCR instrument. This work was supported by NSERC operating grants to T.G.R. and an NSERC IRC to J.D.M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas. G. Rand.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rand, T.G., Sun, M., Gilyan, A. et al. Dectin-1 and inflammation-associated gene transcription and expression in mouse lungs by a toxic (1,3)-β-d glucan. Arch Toxicol 84, 205–220 (2010). https://doi.org/10.1007/s00204-009-0481-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-009-0481-4

Keywords

Navigation