Skip to main content

Advertisement

Log in

Effect of gestational and lactational exposure to perfluorooctanesulfonate on calcium-dependent signaling molecules gene expression in rats’ hippocampus

  • Reproductive Toxicology
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Perfluorooctanesulfonate (PFOS) is an environmental contaminant found in human and animal tissues worldwide. The developing nervous system is thought to be particularly sensitive to PFOS by the fact that PFOS can cross blood–brain and placental barriers. Effect of gestational and lactational exposure to PFOS on central nervous system (CNS) in Wistar rats was investigated by the cross-foster model built with PFOS at 0 or 3.2 mg/kg food. Real-time reverse transcription-polymerase chain reaction was employed to evaluate the gene expression of calcium-dependent signaling molecules in rats’ hippocampus which are critical to the function of CNS. The expression of calcium-related signaling molecules, such as N-methyl-d-aspartate receptor subtype-2B (NR2B), calmodulin (CaM), Ca2+/calmodulin-dependent kinase II α (CaMKIIα) and cAMP-response element-binding (CREB) were increased in the PFOS exposure group at postnatal day 1 (PND 1). The decreased NR2B in the prenatal PFOS exposure group, the decreased CaM in the pre-/postnatal PFOS exposure group, the increased CaMKIIα in the whole-life PFOS exposure group and the increased CREB in the prenatal/whole-life PFOS exposure group was observed at PND 7. At PND 35, rats exhibited the decreased NR2B in the pre-/postnatal and the whole-life PFOS exposure group, and the decreased CaM in the postnatal PFOS group. The results indicate that perinatal exposure to PFOS during the critical period of development of the brain may have neurotoxic effect on CNS by mediating the molecules of calcium signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Austin ME, Kasturi BS, Barber M, Kannan K, MohanKumar PS, MohanKumar SMJ (2003) Neuroendocrine effects of perfluorooctane sulfonate in rats. Environ Health Perspect 111:1485–1489. doi:10.1289/ehp

    CAS  PubMed  Google Scholar 

  • Berridge MJ (1998) Neuronal calcium signaling. Neuron 21:13–26. doi:10.1016/S0896-6273(00)80510-3

    Article  CAS  PubMed  Google Scholar 

  • Bliss TVP, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361:31–39. doi:10.1038/361031a0

    Article  CAS  PubMed  Google Scholar 

  • Butenhoff JL, Olsen GW, Pfahles HA (2006) The applicability of biomonitoring data for perfluorooctanesulfonate to the environmental public health continuum. Environ Health Perspect 114:1776–1782. doi:10.1289/ehp.9060

    CAS  PubMed  Google Scholar 

  • Butenhoff JL, Ehresman DJ, Chang SC, Parker GA, Stump DG (2009) Gestational and lactational exposure to potassium perfluorooctanesulfonate (K + PFOS) in rats: developmental neurotoxicity. Reprod Toxicol 27:319–330. doi:10.1016/j.reprotox.2008.12.010

    Article  CAS  PubMed  Google Scholar 

  • Calafat AM, Wong LY, Kuklenyik Z, Reidy JA, Needham LL (2007) Polyfluoroalkyl chemicals in the U.S. population: data from the National Health and Nutrition Examination Survey (NHANES) 2003–2004 and comparisons with NHANES 1999–2000. Environ Health Perspect 115:1596–1602. doi:10.1289/ehp.10598

    CAS  PubMed  Google Scholar 

  • Chang SC, Ehresman DJ, Bjork JA, Wallace KB, Parker GA, Stump DG, Butenhoff JL (2009) Gestational and lactational exposure to potassium perfluorooctanesulfonate (K + PFOS) in rats: toxicokinetics, thyroid hormone status, and related gene expression. Reprod Toxicol 3–4:387–399. doi:10.1016/j.reprotox.2009.01.005

    Article  CAS  Google Scholar 

  • Christopher L (2009) Perfluoroalkyl acids: recent activities and research progress. Reprod Toxicol 27:209–211. doi:10.1016/j.reprotox.2009.02.011

    Article  CAS  Google Scholar 

  • Fuentes S, Colomina MT, Vicens P, Domingo JL (2007a) Influence of maternal restraint stress on the long-lasting effects induced by prenatal exposure to perfluorooctane sulfonate (PFOS) in mice. Toxicol Lett 171:162–170. doi:10.1016/j.toxlet.2007.05.006

    Article  CAS  PubMed  Google Scholar 

  • Fuentes S, Colomina MT, Vicens P, Franco PN, Domingo JL (2007b) Concurrent exposure to perfluorooctane sulfonate (PFOS) and restraint stress during pregnancy in mice: effects on postnatal development and behavior of the offspring. Toxicol Sci 98:589–598. doi:10.1093/toxsci/kfm121

    Article  CAS  PubMed  Google Scholar 

  • Fuentes S, Vicens P, Colomina MT, Domingo JL (2007c) Behavioral effects in adult mice exposed to perfluorooctane sulfonate (PFOS). Toxicology 242:123–129. doi:10.1016/j.tox.2007.09.012

    Article  CAS  PubMed  Google Scholar 

  • Grasty RC, Bjork JA, Wallace KB, Wolf DC, Lau CS, Rogers JM (2005) Effects of prenatal perfluorooctane sulfonate (PFOS) exposure on lung maturation in the perinatal rat. Birth Defects Res B Dev Reprod Toxicol 74:405–416. doi:10.1002/bdrb.20059

    Article  CAS  PubMed  Google Scholar 

  • Hahn K, DeBiasio R, Taylor DL (1992) Patterns of elevated free calcium and calmodulin activation in living cells. Nature 359:736–738. doi:10.1038/359736a0

    Article  CAS  PubMed  Google Scholar 

  • Hansen KJ, Clemen LA, Ellefson ME, Johnson HO (2001) Compound-specific, quantitative characterization of organic fluorochemicals in biological matrices. Environ Sci Technol 35:766–770. doi:10.1021/es001489z

    Article  CAS  PubMed  Google Scholar 

  • Harada KJ, Xu F, Ono K, Iijima T, Koizumi A (2005) Effects of PFOS and PFOA on L-type Ca2+ currents in guinea-pig ventricular myocytes. Biochem Biophys Res Commun 329:487–494. doi:10.1016/j.bbrc.2005.01.163

    Article  CAS  PubMed  Google Scholar 

  • Harada KH, Ishii TM, Takatsuka K, Koizumi A, Ohmori H (2006) Effects of perfluorooctane sulfonate on action potentials and currents in cultured rat cerebellar Purkinje cells. Biochem Biophys Res Commun 351:240–245. doi:10.1016/j.bbrc.2006.10.038

    Article  CAS  PubMed  Google Scholar 

  • Harada KH, Hashida S, Kaneko T, Takenaka K, Minata M, Inoue K, Saito N, Koizumi A (2007) Biliary excretion and cerebrospinal fluid partition of perfluorooctanoate and perfluorooctane sulfonate in humans. Environ Toxicol Pharmacol 24:134–139. doi:10.1016/j.etap.2007.04.003

    Article  CAS  Google Scholar 

  • Hardingham GE, Bading H (2003) The Yin and Yang of NMDA receptor signaling. Trends Neurosci 26:81–89. doi:10.1016/S0166-2236(02)00040-1

    Article  CAS  PubMed  Google Scholar 

  • Houde M, Martin JW, Letcher RJ, Solomon KR, Muir DC (2006) Biological monitoring of polyfluoroalkyl substances: a review. Environ Sci Technol 40:3463–3473. doi:10.1021/es052580b

    Article  CAS  PubMed  Google Scholar 

  • Inoue K, Okada F, Ito R, Kato S, Sasaki S, Nakajima S et al (2004) Perfluorooctane sulfonate (PFOS) and related perfluorinated compounds in human maternal and cord blood samples: assessment of PFOS exposure in a susceptible population during pregnancy. Environ Health Perspect 112:1204–1207. doi:10.1289/ehp.6864

    CAS  PubMed  Google Scholar 

  • Johansson N, Fredriksson A, Eriksson P (2008) Neonatal exposure to perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) causes neurobehavioural defects in adult mice. Neurotoxicology 29:160–169. doi:10.1016/j.neuro.2007.10.008

    Article  CAS  PubMed  Google Scholar 

  • Johansson N, Eriksson P, Viberg H (2009) Neonatal exposure to PFOS and PFOA in mice results in changes in proteins which are important for neuronal growth and synaptogenesis in the developing brain. Toxicol Sci 108:412–418. doi:10.1093/toxsci/kfp029

    Article  CAS  PubMed  Google Scholar 

  • Johnson JD, Gibson SJ, Ober RE (1984) Cholestyramine-enhanced fecal elimination of carbon-14 in rats after administration of ammonium [14C]perfluorooctanoate or potassium [14C]perfluorooctanesulfonate. Fundam Appl Toxicol 4:972–976

    Article  CAS  PubMed  Google Scholar 

  • Jones PD, Hu W, De Coen W, Newsted JL, Giesy JP (2003) Binding of perfluorinated fatty acids to serum proteins. Environ Toxicol Chem 22:2639–2649. doi:10.1897/02-553

    Article  CAS  PubMed  Google Scholar 

  • Kärrman A, Ericson I, van Bavel B, Darnerud PO, Aune M, Glynn A et al (2007) Exposure of perfluorinated chemicals through lactation: levels of matched human milk and serum and a temporal trend, 1996–2004, in Sweden. Environ Health Perspect 115:226–230. doi:10.1289/ehp.9491

    PubMed  Google Scholar 

  • Lau C, Thibodeaux JR, Hanson RG, Rogers JM, Grey BE, Stanton ME et al (2003) Exposure to perfluorooctane sulfonate during pregnancy in rat and mouse. II. Postnatal evaluation. Toxicol Sci 74:382–392. doi:10.1093/toxsci/kfg122

    Article  CAS  PubMed  Google Scholar 

  • Lau C, Butenhoff JL, Rogers JM (2004) The developmental toxicity of perfluoroalkyl acids and their derivatives. Toxicol Appl Pharmacol 198:231–241. doi:10.1016/j.taap.2003.11.031

    Article  CAS  PubMed  Google Scholar 

  • Lau C, Thibodeaux JR, Das K, Ehresman DJ, Tanaka S, Froehlich J, Butenhoff JL (2006) Evaluation of perfluorooctane sulfonate in the rat brain. Toxicologist 90, S118 (Abstract ID: 576)

    Google Scholar 

  • Lau C, Anitole K, Hodes C, Lai D, Pfahles HA, Seed J (2007) Perfluoroalkyl acids: a review of monitoring and toxicological findings. Toxicol Sci 99:366–394. doi:10.1093/toxsci/kfm128

    Article  CAS  PubMed  Google Scholar 

  • Liao CY, Li XY, Wu B, Duan S, Jiang GB (2008) Acute enhancement of synaptic transmission and chronic inhibition of synaptogenesis induced by perfluorooctane sulfonate through mediation of voltage-dependent calcium channel. Environ Sci Technol 42:5335–5341. doi:10.1021/es800018k

    Article  CAS  PubMed  Google Scholar 

  • Liao CY, Cui L, Zhou QF, Duan SM, Jiang GB (2009) Effects of perfluorooctane sulfonate on ion channels and glutamate-activated current in cultured rat hippocampal neurons. Environ Toxicol Pharmacol 27:338–344. doi:10.1016/j.etap.2008.11.013

    Article  CAS  Google Scholar 

  • Lonze BE, Ginty DD (2002) Function and regulation of CREB family transcription factors in the nervous system. Neuron 35:605–623. doi:10.1016/S0896-6273(02)00828-0

    Article  CAS  PubMed  Google Scholar 

  • Lonze BE, Riccio A, Cohen S, Ginty DD (2002) Apoptosis, axonal growth defects, and degeneration of peripheral neurons in mice lacking CREB. Neuron 34:371–385. doi:10.1016/S0896-6273(02)00686-4

    Article  CAS  PubMed  Google Scholar 

  • Luebker DJ, Case MT, York RG, Moore JA, Hansen KJ, Butenhoff JL (2005) Two-generation reproduction and cross-foster studies of perfluorooctanesulfonate (PFOS) in rats. Toxicology 215:126–148. doi:10.1016/j.tox.2005.07.018

    Article  CAS  PubMed  Google Scholar 

  • Maestri L, Negri S, Ferrari M, Ghittori S, Fabris F, Danesino P, Imbriani M (2006) Determination of perfluorooctanoic acid and perfluorooctanesulfonate in human tissues by liquid chromatography/single quadrupole mass spectrometry. Rapid Commun Mass Spectrom 20:2728–2734. doi:10.1016/j.jchromb.2004.07.014

    Article  CAS  PubMed  Google Scholar 

  • Mantamadiotis T, Lemberger T, Bleckmann SC, Kern H et al (2002) Disruption of CREB function in brain leads to neurodegeneratio. Nat Genet 31:47–54. doi:10.1038/ng882

    Article  CAS  PubMed  Google Scholar 

  • Matsubara E, Harada K, Inoue K, Koizumi A (2006) Effects of perfluorinated amphiphiles on backward swimming in Paramecium caudatum. Biochem Biophys Res Commun 339:554–561. doi:10.1016/j.bbrc.2005.11.048

    Article  CAS  PubMed  Google Scholar 

  • Midasch O, Drexler H, Hart N, Beckmann MW, Angerer J (2007) Transplacental exposure of neonates to perfluorooctanesulfonate and perfluorooctanoate: a pilot study. Int Arch Occup Environ Health 80:643–648. doi:10.1007/s00420-006-0165-9

    Article  CAS  PubMed  Google Scholar 

  • Monroy R, Morrison K, Teo K, Atkinson S, Kubwabo C, Stewart B et al (2008) Serum levels of perfluoroalkyl compounds in human maternal and umbilical cord blood samples. Environ Res 108:56–62. doi:10.1016/j.envres.2008.06.001

    Article  CAS  PubMed  Google Scholar 

  • Sala C, Rudolph-Correia S, Sheng M (2000) Developmentally regulated NMDA receptor-dependent dephosphorylation of cAMP response element-binding protein (CREB) in hippocampal neurons. J Neurosci 20:3529–3536

    CAS  PubMed  Google Scholar 

  • Saucerman JJ, Bers DM (2008) Calmodulin mediates differential sensitivity of CaMKII and calcineurin to Local Ca2+ in cardiac myocytes. Biophys J 95:4597–4612. doi:10.1529/biophysj.108.128728

    Article  CAS  PubMed  Google Scholar 

  • Schäfer S, Bickmeyer U, Koehler A (2009) Measuring Ca2+ -signalling at fertilization in the sea urchin Psammechinus miliaris: alterations of this Ca2+-signal by copper and 2, 4, 6-tribromophenol. Comp Biochem Physiol C Toxicol Phamacol 150(2):261–269. doi:10.1016/j.cbpc.2009.05.004

    Article  CAS  Google Scholar 

  • Slotkin TA, MacKillop EA, Melnick RL, Thayer KA, Seidler FJ (2008) Developmental neurotoxicity of perfluorinated chemicals modeled in vitro. Environ Health Perspect 116:716–722. doi:10.1289/ehp.11253

    Article  CAS  PubMed  Google Scholar 

  • So MK, Yamashita N, Taniyasu S, Jiang Q, Giesy JP, Chen K et al (2006) Health risks in infants associated with exposure to perfluorinated compounds in human breast milk from Zhoushan, China. Environ Sci Technol 40:2924–2929. doi:10.1021/es060031f

    Article  CAS  PubMed  Google Scholar 

  • Spliethoff HM, Tao L, Shaver SM, Aldous KM, Pass KA, Kannan K et al (2008) Use of newborn screening program blood spots for exposure assessment: declining levels of perfluorinated compounds in New York state infants. Environ Sci Technol 42:5361–5367. doi:10.1021/es8006244

    Article  CAS  PubMed  Google Scholar 

  • Stead JD, Neal C, Meng F, Wang YJ, Evans S, Vazquez DM, Watson SJ, Akil H (2006) Transcriptional profiling of the developing rat brain reveals that the most dramatic regional differentiation in gene expression occurs postpartum. J Neurosci 26:345–353. doi:10.1523/JNEUROSCI.2755-05.2006

    Article  CAS  PubMed  Google Scholar 

  • Tao L, Kannan K, Wong CM, Arcaro KF, Butenhoff JL (2008) Perfluorinated compounds in human milk from Massachusetts. U.S.A. Environ Sci Technol 42:3096–3101. doi:10.1021/es702789k

    Article  CAS  Google Scholar 

  • Vanhoutte P, Bading H (2003) Opposing roles of synaptic and extrasynaptic NMDA receptors in neuronal calcium signalling and BDNF gene regulation. Curr Opin Neurobiol 13:366–371. doi:10.1016/S0959-4388(03)00073-4

    Article  CAS  PubMed  Google Scholar 

  • Volkel W, Genzel BO, Demmelmair H, Gebauer C, Koletzko B, Twardella D et al (2008) Perfluorooctane sulphonate (PFOS) and perfluorooctanoic acid (PFOA) in human breast milk: results of a pilot study. Int J Hyg Environ Health 211:440–446. doi:10.1016/j.ijheh.2007.07.024

    Article  CAS  PubMed  Google Scholar 

  • Wollmuth LP, Sobolevsky AI (2004) Structure and gating of the glutamate receptor ion channel. Trends Neurosci 27:321–328. doi:10.1016/j.tins.2004.04.005

    Article  CAS  PubMed  Google Scholar 

  • Woolf CJ, Salter MW (2000) Neuronal plasticity: increasing the gain in pain. Science 288:1765–1769. doi:10.1126/science.288.5472.1765

    Article  CAS  PubMed  Google Scholar 

  • Xia ZG, Storm DR (2005) The role of calmodulin as a signal integrator for synaptic plasticity. Nat Rev Neurosci 6:267–276. doi:10.1038/nrn1647

    Article  CAS  PubMed  Google Scholar 

  • Yamakura T, Shimoji K (1999) Subunit- and site-specific pharmacology of the NMDA receptor channel. Prog Neurobiol 59:279–298. doi:10.1016/S0301-0082(99)00007-6

    Article  CAS  PubMed  Google Scholar 

  • Zacharias DA, DeMarcoa SJ, Strehler EE (1997) mRNA expression of the four isoforms of the human plasma membrane Ca2+-ATPase in the human hippocampus. Mol Brain Res 45:173–176. doi:10.1016/S0169-328X(97)00009-0

    Article  Google Scholar 

  • Zhang SY, Liu Q, Liu QJ, Duan HW, He FS, Zheng YX (2006) Effect of 2, 5-hexanedione on calcium homeostasis of motor neuron. Chin J Ind Hyg Occup Dis 24:270–272

    Google Scholar 

  • Zuo ZH, Cai Jl, Wang XL, Li BW, Wang CG, Chen YX (2009) Acute administration of tributyltin and trimethyltin modulate glutamate and N-methyl-d-aspartate receptor signaling pathway in Sebastiscus marmoratus. Aquatic Toxicol 92:44–49. doi:10.1016/j.aquatox.2009.01.008

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank National Nature Science Foundation of China (No.20837004 and No.30771772) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yihe Jin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, X., Liu, W., Jin, Y. et al. Effect of gestational and lactational exposure to perfluorooctanesulfonate on calcium-dependent signaling molecules gene expression in rats’ hippocampus. Arch Toxicol 84, 71–79 (2010). https://doi.org/10.1007/s00204-009-0467-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-009-0467-2

Keywords

Navigation