Skip to main content
Log in

Effects of macrolides on proinflammatory epitops on endothelial cells in vitro

  • Organ Toxicity and Mechanisms
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

An inflammatory reaction at the site of infusion is a common clinical problem that is observed after the intravenous application of antibiotics and other drugs. The pathomechanism of this infusion-related phlebitis is not fully understood. We analyzed the effects of the three macrolide antibiotics erythromycin, clarithromycin and azithromycin on human endothelial cells in vitro. As a positive control quinupristin/dalfopristin was studied. The cytotoxicity of all substances was analyzed by a modified MTT cytotoxicity assay with 3T3-fibroblasts and EA.hy 926 endothelial cells. Cells were incubated for 10 days with the antibiotics. After adding MTT the optical density was measured which correlates with cell death. Clarithromycin exhibited the strongest cytotoxic effect on EA.hy 926 cells (EC50 30 mg/L), followed by azithromycin (EC50 40 mg/L), a cytotoxic effect of erythromycin could only be observed at much higher concentrations (EC50 310 mg/L). The reaction of the endothelial cells was further analyzed in detail by means of flow cytometry. For these experiments the endothelial cell line EA.hy 926 as well as primary cells (HUVEC) were used. The antigens were stained with fluoresceinisothiocyanat- or phycoerythrin-conjugated monoclonal antibodies for the following surface antigens: CD34, E-selectin (CD62E), ICAM-1 (CD54) and VCAM-1 (CD106). Cells were incubated with the antibiotics at concentrations ranging from 100 to 800 mg/L (clarithromycin and azithromycin) and from 200 to 1,200 mg/L (erythromycin). These concentrations occur under therapeutic conditions at the site of infusion. Cells were incubated for 2 h and analysis was carried out after an additional culture period of 22 h without test compounds. A significantly enhanced expression of all four antigens was observed which was most pronounced at 800 mg/L (erythromycin), 600 mg/L (azithromycin) and 400 mg/L (clarithromycin). A concentration of 800 mg/L erythromycin medium caused an increase of the expression of CD34 (+6%), E-selectin (+5%), ICAM-1 (+14%) and VCAM-1 (+5%). At lower concentrations (600 mg/L) azithromycin provokes a stronger upregulation of the proinflammatory antigens: CD34 (+17%), E-selectin (+18%), ICAM-1 (+27%) and VCAM-1 (+17%). At a concentration of 400 mg/L medium clarithromycin induced a similar effect as erythromycin at twice this concentration: CD34 (+5%), E-selectin (+7%), ICAM-1 (+23%) and VCAM-1 (+4%). Reactions of the HUVECs were less pronounced than those of the EA.hy 926 cells. Cell surface markers involved in interactions between endothelial cells and leukocytes proved to be useful markers to study differences in the proinflammatory potential of the three macrolides. By analysing the upregulation of these antigens on EA.hy 926 cells in vitro the risk of phlebitis could be predictable for other drugs as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figs. 1, 2
Figs. 3, 4
Fig. 5

Similar content being viewed by others

References

  • Carlos TM, Harlan JM (1994) Leukocyte-endothelial adhesion molecules. Blood 84:2068–2101

    PubMed  CAS  Google Scholar 

  • Dibble SL, Bostrom-Ezrati J, Rizzuto C (1991) Clinical predictors of intravenous site symptoms. Res Nurs Health 14:413–420

    Article  PubMed  CAS  Google Scholar 

  • Gangenahalli GU, Singh VK, Verma YK, Gupta P, Sharma RK, Chandra R, Luthra PM (2006) Hematopoietic stem cell antigen CD34: role in adhesion or homing. Stem Cells Dev 15:305–313

    Article  PubMed  CAS  Google Scholar 

  • Gorgoulis VG, Zacharatos P, Kotsinas A, Kletsas D, Mariatos G, Zoumpourlis V, Ryan KM, Kittas C, Papavassiliou AG (2003) p53 activates ICAM-1 (CD54) expression in an NF-kappaB-independent manner. Embo J 22:1567–1578

    Article  PubMed  CAS  Google Scholar 

  • Kilic B, Kruse M, Stahlmann R (2006) The in vitro effects of quinupristin/dalfopristin, erythromycin and levofloxacin at low concentrations on the expression of different cell adhesion molecules on the surface of endothelial cells (Eahy926). Toxicology 218:30–38

    Article  PubMed  CAS  Google Scholar 

  • Kuwahara T, Asanami S, Kubo S (1998) Experimental infusion phlebitis: tolerance osmolality of peripheral venous endothelial cells. Nutrition 14:496–501

    Article  PubMed  CAS  Google Scholar 

  • Kuwahara T, Asanami S, Kawauchi Y, Kubo S (1999) Experimental infusion phlebitis: tolerance pH of peripheral vein. J Toxicol Sci 24:113–121

    PubMed  CAS  Google Scholar 

  • Lanbeck P, Odenholt I, Paulsen O (2002) Antibiotics differ in their tendency to cause infusion phlebitis: a prospective observational study. Scand J Infect Dis 34:512–519

    Article  PubMed  CAS  Google Scholar 

  • Lanbeck P, Odenholt I, Riesbeck K (2004) Dicloxacillin and erythromycin at high concentrations increase ICAM-1 expression by endothelial cells: a possible factor in the pathogenesis of infusion phlebitis. J Antimicrob Chemother 53:174–179

    Article  PubMed  CAS  Google Scholar 

  • Lidington EA, Moyes DL, McCormack AM, Rose ML (1999) A comparison of primary endothelial cells and endothelial cell lines for studies of immune interactions. Transpl Immunol 7:239–246

    Article  PubMed  CAS  Google Scholar 

  • Madan B, Prasad AK, Parmar VS, Ghosh B (2004) 1,4-dihydroxyxanthone modulates the adhesive property of endothelial cells by inhibiting intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) and E-selectin. Bioorg Med Chem 12:1431–1437

    Article  PubMed  CAS  Google Scholar 

  • Maki DG, Ringer M (1991) Risk factors for infusion-related phlebitis with small peripheral venous catheters: a randomized controlled trial. Ann Intern Med 114:845–854

    PubMed  CAS  Google Scholar 

  • Monreal M, Quilez F, Rey-Joly C, Rodriguez S, Sopena N, Neira C, Roca J (1999) Infusion phlebitis in patients with acute pneumonia: a prospective study. Chest 115:1576–1580

    Article  PubMed  CAS  Google Scholar 

  • Rehm SJ, Graham DR, Srinath L, Prokocimer P, Richard MP, Talbot GH (2001) Successful administration of quinupristin/dalfopristin in the outpatient setting. J Antimicrob Chemother 47:639–645

    Article  PubMed  CAS  Google Scholar 

  • Rubinstein E, Prokocimer P, Talbot GH (1999) Safety and tolerability of quinupristin/dalfopristin: administration guidelines. J Antimicrob Chemother 44(Suppl A):37–46

    Article  PubMed  CAS  Google Scholar 

  • Scholz G, Pohl I, Genschow E, Klemm M, Spielmann H (1999) Embryotoxicity screening using embryonic stem cells in vitro: correlation to in vivo teratogenicity. Cells Tissues Organs 165:203–211

    Article  PubMed  CAS  Google Scholar 

  • Stahlmann R, Lode H (1999) Toxicity of quinolones. Drugs 58(Suppl 2):37–42

    Article  PubMed  CAS  Google Scholar 

  • Subrahmanyam M (1989) Infusion thrombophlebitis–histological and bacteriological study. Indian J Med Sci 43:231–234

    PubMed  CAS  Google Scholar 

  • Tagalakis V, Kahn SR, Libman M, Blostein M (2002) The epidemiology of peripheral vein infusion thrombophlebitis: a critical review. Am J Med 113:146–151

    Article  PubMed  Google Scholar 

  • Van de Stolpe A, van der Saag PT (1996) Intercellular adhesion molecule-1. J Mol Med 74:13–33

    Article  PubMed  Google Scholar 

  • Viluksela M, Vainio PJ, Tuominen RK (1996) Cytotoxicity of macrolide antibiotics in a cultured human liver cell line. J Antimicrob Chemother 38:465–473

    Article  PubMed  CAS  Google Scholar 

  • Vorbach H, Weigel G, Robibaro B, Armbruster C, Schaumann R, Hlousek M, Reiter M, Griesmacher A, Georgopoulos A (1998) Endothelial cell compatibility of clarithromycin for intravenous use. Clin Biochem 31:653–656

    Article  PubMed  CAS  Google Scholar 

  • Vorbach H, Armbruster C, Robibaro B, Griesmacher A, El-Menyawi I, Daxecker H, Raab M, Muller MM (2002) Endothelial cell compatibility of azithromycin and erythromycin. J Antimicrob Chemother 49:407–409

    Article  PubMed  CAS  Google Scholar 

  • Woodhouse CR (1980) Infusion thrombophlebitis: the histological and clinical features. Ann R Coll Surg Engl 62:364–368

    PubMed  CAS  Google Scholar 

  • Zimmermann T, Laufen H, Riedel KD, Treadway G, Wildfeuer A (2001) Comparative tolerability of intravenous azithromycin, clarithromycin and erythromycin in healthy volunteers. Clin Drug Invest 21:527–536

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Stahlmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Millrose, M., Kruse, M., Flick, B. et al. Effects of macrolides on proinflammatory epitops on endothelial cells in vitro. Arch Toxicol 83, 469–476 (2009). https://doi.org/10.1007/s00204-008-0388-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-008-0388-5

Keywords

Navigation