Skip to main content

Advertisement

Log in

Chromosomal instability in bladder cancer

  • Genotoxicity and Carcinogenicity
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Chromosomal instability (CIN) distinguishes invasive urothelial carcinomas from less malignant papillary subtypes. Recent results implicate checkpoint dysfunction as a crucial factor underlying the emergence of aneuploidy in urothelial carcinogenesis. It may moreover contribute to DNA repair defects. Therefore, defects in cell cycle regulation, p53 function, and checkpoint signaling initially caused by carcinogens in the urothelium could ultimately elicit CIN. Among several mechanisms contributing to aneuploidy, breakage-fusion-bridge (BFB) cycles initiated by defective telomeres may be particularly relevant. The mechanism generating large interstitial deletions, prominently at 9p21, appears to be distinct. New experimental approaches are required to address important unresolved questions such as the precise relationship between telomere erosion and telomerase activation, the influence of checkpoint defects on DNA double-strand repair by non-homologous and homomologous recombination repair systems, and the mechanism responsible for megabase-sized interstitial deletions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agrelo R, Cheng WH, Setien F et al (2006) Epigenetic inactivation of the premature aging Werner syndrome gene in human cancer. Proc Natl Acad Sci USA 103:8822–8827

    Article  PubMed  CAS  Google Scholar 

  • Akyüz N, Boehden GS, Süsse S et al (2002) DNA substrate dependence of p53-mediated regulation of double-strand break repair. Mol Cell Biol 22:6306–6317

    Article  PubMed  CAS  Google Scholar 

  • Bartkova J, Horejsí Z, Koed K et al (2005) DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 434:864–870

    Article  PubMed  CAS  Google Scholar 

  • Bartkova J, Rezaei N, Liontos M et al (2006) Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature 444:633–637

    Article  PubMed  CAS  Google Scholar 

  • Baskin LS, Hayward SW, Sutherland RA et al (1997) Cellular signaling in the bladder. Front Biosci 2:592–595

    Google Scholar 

  • Bentley J, Diggle CP, Harnden P, Knowles MA, Kiltie AE (2004) DNA double strand break repair in human bladder cancer is error prone and involves microhomology-associated end-joining. Nucleic Acids Res 32:5249–5259

    Article  PubMed  CAS  Google Scholar 

  • Berwick M, Vineis P (2000) Markers of DNA repair and susceptibility to cancer in humans: an epidemiologic review. J Natl Cancer Inst 92:874–897

    Article  PubMed  CAS  Google Scholar 

  • Burger M, Burger SJ, Denzinger S et al (2006) Elevated microsatellite instability at selected tetranucleotide repeats does not correlate with clinicopathologic features of bladder cancer. Eur Urol 50:770–775

    Article  PubMed  CAS  Google Scholar 

  • Burwinkel B, Kilimann MW (1998) Unequal homologous recombination between LINE-1 elements as a mutational mechanism in human genetic disease. J Mol Biol 277:513–517

    Article  PubMed  CAS  Google Scholar 

  • Catto JW, Azzouzi AR, Amira N et al (2003) Distinct patterns of microsatellite instability are seen in tumours of the urinary tract. Oncogene 22:8699–8706

    Article  PubMed  CAS  Google Scholar 

  • Chen L, Huang S, Lee L et al (2003) WRN, the protein deficient in Werner syndrome, plays a critical structural role in optimizing DNA repair. Aging Cell 2:191–199

    Article  PubMed  Google Scholar 

  • Christmann M, Tomicic MT, Roos WP, Kaina B (2003) Mechanisms of human DNA repair: an update. Toxicology 193:3–34

    Article  PubMed  CAS  Google Scholar 

  • Corbin S, Neilly ME, Espinosa R 3rd et al (2002) Identification of unstable sequences within the common fragile site at 3p14.2: implications for the mechanism of deletions within fragile histidine triad gene/common fragile site at 3p14.2 in tumors. Cancer Res 62:3477–3484

    PubMed  CAS  Google Scholar 

  • Coquelle A, Toledo F, Stern S, Bieth A, Debatisse M (1998) A new role for hypoxia in tumor progression: induction of fragile site triggering genomic rearrangements and formation of complex DMs and HSRs. Mol Cell 2:259–265

    Article  PubMed  CAS  Google Scholar 

  • Cox C, Bignell G, Greenman C et al (2005) A survey of homozygous deletions in human cancer genomes. Proc Natl Acad Sci USA 102:4542–4547

    Article  PubMed  CAS  Google Scholar 

  • Crallan RA, Georgopoulos NT, Southgate J (2006) Experimental models of human bladder carcinogenesis. Carcinogenesis 27:374–381

    Article  PubMed  CAS  Google Scholar 

  • Eble JN, Sauter G, Epstein JI, Sesterhenn IA (2004) Pathology and genetics of tumours of the urinary system and male genital organs. IARC Press, Lyon

    Google Scholar 

  • Ferlay J, Bray F, Pisani P et al (2004) Globocan 2002: Cancer incidence, mortality and prevalence worldwide. IARC Cancer Base No.5 version 2.0

  • Figueroa JD, Malats N, Real FX et al (2007a) Genetic variation in the base excision repair pathway and bladder cancer risk. Hum Genet 121:233–242

    Article  PubMed  CAS  Google Scholar 

  • Figueroa JD, Malats N, Rothman N et al (2007b) Evaluation of genetic variation in the double-strand break repair pathway and bladder cancer risk. Carcinogenesis 28:1788–1793

    Article  PubMed  CAS  Google Scholar 

  • Florl AR, Schulz WA (2003) Peculiar structure and location of 9p21 homozygous deletion breakpoints in human cancer cells. Genes Chromosomes Cancer 37:141–148

    Article  PubMed  CAS  Google Scholar 

  • Florl AR, Löwer R, Schmitz-Dräger BJ, Schulz WA (1999) DNA methylation and expression of LINE-1 and HERV-K provirus sequences in urothelial and renal cell carcinomas. Br J Cancer 80:1312–1321

    Article  PubMed  CAS  Google Scholar 

  • Florl AR, Franke KH, Niederacher D et al (2000) DNA methylation and the mechanisms of CDKN2A inactivation in transitional cell carcinoma of the urinary bladder. Lab Invest 80:1513–1522

    PubMed  CAS  Google Scholar 

  • García-Closas M, Malats N, Real FX et al (2006) Genetic variation in the nucleotide excision repair pathway and bladder cancer risk. Cancer Epidemiol Biomarkers Prev 15:536–542

    Article  PubMed  Google Scholar 

  • Gisselsson D (2003) Chromosome instability in cancer: how, when, and why? Adv Cancer Res 87:1–29

    Article  PubMed  CAS  Google Scholar 

  • Grollman AP, Shibutani S, Moriya M et al (2007) Aristolochic acid and the etiology of endemic (Balkan) nephropathy. Proc Natl Acad Sci USA 104:12129–12134

    Article  PubMed  CAS  Google Scholar 

  • Hartmann A, Dietmaier W, Hofstädter F et al (2003) Urothelial carcinoma of the upper urinary tract: inverted growth pattern is predictive of microsatellite instability. Hum Pathol 34:222–227

    Article  PubMed  Google Scholar 

  • Jasin M (1996) Genetic manipulation of genomes with rare-cutting endonucleases. Trends Genet 12:224–228

    Article  PubMed  CAS  Google Scholar 

  • Jin Y, Stewénius Y, Lindgren D et al (2007) Distinct mitotic segregation errors mediate chromosomal instability in aggressive urothelial cancers. Clin Cancer Res 13:1703–1712

    Article  PubMed  CAS  Google Scholar 

  • Kitagawa Y, Inoue K, Sasaki S et al (2002) Prevalent involvement of illegitimate V(D)J recombination in chromosome 9p21 deletions in lymphoid leukemia. J Biol Chem 277:46289–46297

    Article  PubMed  CAS  Google Scholar 

  • Knowles MA (2006) Molecular subtypes of bladder cancer: Jekyll and Hyde or chalk and cheese? Carcinogenesis 27:361–373

    Article  PubMed  CAS  Google Scholar 

  • Kohno T, Yokota J (2006) Molecular processes of chromosome 9p21 deletions causing inactivation of the p16 tumor suppressor gene in human cancer: deduction from structural analysis of breakpoints for deletions. DNA Repair (Amst) 5:1273–1281

    Article  CAS  Google Scholar 

  • Lacey KR, Jackson PK, Stearns T (1999) Cyclin-dependent kinase control of centrosome duplication. Proc Natl Acad Sci USA 96:2817–2822

    Article  PubMed  CAS  Google Scholar 

  • Lengauer C, Kinzler KW, Vogelstein B (1998) Genetic instabilities in human cancers. Nature 396:643–649

    Article  PubMed  CAS  Google Scholar 

  • Liang L, Deng L, Chen Y et al (2005) Modulation of DNA end joining by nuclear proteins. J Biol Chem 280:31442–31449

    Article  PubMed  CAS  Google Scholar 

  • Lin Y, Miyamoto H, Fujinami K et al (1996) Telomerase activity in human bladder cancer. Clin Cancer Res 2:929–932

    PubMed  CAS  Google Scholar 

  • López-Knowles E, Hernández S, Malats N et al (2006) PIK3CA mutations are an early genetic alteration associated with FGFR3 mutations in superficial papillary bladder tumors. Cancer Res 66:7401–7404

    Article  PubMed  Google Scholar 

  • McDermott KM, Zhang J, Holst CR et al (2006) p16(INK4a) prevents centrosome dysfunction and genomic instability in primary cells. PLoS Biol 4:e51

    Article  PubMed  CAS  Google Scholar 

  • Meeker AK, Hicks JL, Iacobuzio-Donahue CA et al (2004) Telomere length abnormalities occur early in the initiation of epithelial carcinogenesis. Clin Cancer Res 10:3317–3326

    Article  PubMed  CAS  Google Scholar 

  • Mimori K, Druck T, Inoue H et al (1999) Cancer-specific chromosome alterations in the constitutive fragile region FRA3B. Proc Natl Acad Sci USA 96:7456–7461

    Article  PubMed  CAS  Google Scholar 

  • Mohrenweiser HW, Jones IM (1998) Variation in DNA repair is a factor in cancer susceptibility: a paradigm for the promises and perils of individual and population risk estimation? Mutat Res 400:15–24

    PubMed  CAS  Google Scholar 

  • Neveling K, Kalb R, Florl AR et al (2007) Disruption of the FA/BRCA pathway in bladder cancer. Cytogenet Genome Res 118:166–176

    Article  PubMed  CAS  Google Scholar 

  • Nortier JL, Martinez MC, Schmeiser HH et al (2000) Urothelial carcinoma associated with the use of a Chinese herb (Aristolochia fangchi). N Engl J Med 342:1686–1692

    Article  PubMed  CAS  Google Scholar 

  • Olfert SM, Felknor SA, Delclos GL (2006) An updated review of the literature: risk factors for bladder cancer with focus on occupational exposures. South Med J 99:1256–1263

    PubMed  Google Scholar 

  • Oshima J, Huang S, Pae C, Campisi J, Schiestl RH (2002) Lack of WRN results in extensive deletion at nonhomologous joining ends. Cancer Res 62:547–551

    PubMed  CAS  Google Scholar 

  • Padilla-Nash HM, Heselmeyer-Haddad K, Wangsa D et al (2001) Jumping translocations are common in solid tumor cell lines and result in recurrent fusions of whole chromosome arms. Genes Chromosomes Cancer 30:349–363

    Article  PubMed  CAS  Google Scholar 

  • Raschke S, Balz V, Efferth T, Schulz WA, Florl AR (2005) Homozygous deletions of CDKN2A caused by alternative mechanisms in various human cancer cell lines. Genes Chromosomes Cancer 42:58–67

    Article  PubMed  CAS  Google Scholar 

  • Ruas M, Peters G (1998) The p16INK4a/CDKN2A tumor suppressor and its relatives. Biochim Biophys Acta 1378:F115–F177

    PubMed  CAS  Google Scholar 

  • Sasaki S, Kitagawa Y, Sekido Y et al (2003) Molecular processes of chromosome 9p21 deletions in human cancers. Oncogene 22:3792–3798

    Article  PubMed  CAS  Google Scholar 

  • Sato M, Sasaki H, Kazui T, Yokota J, Kohno T (2005a) Probing the chromosome 9p21 region susceptible to DNA double-strand breaks in human cells in vivo by restriction enzyme transfer. Oncogene 24:6108–6118

    Article  PubMed  CAS  Google Scholar 

  • Sato M, Takahashi K, Nagayama K et al (2005b) Identification of chromosome arm 9p as the most frequent target of homozygous deletions in lung cancer. Genes Chromosomes Cancer 44:405–414

    Article  PubMed  CAS  Google Scholar 

  • Schulz WA (2006) Understanding urothelial carcinoma through cancer pathways. Int J Cancer 119:1513–1518

    Article  PubMed  CAS  Google Scholar 

  • Seifert HH, Meyer A, Cronauer MV et al (2007) A new and reliable culture system for superficial low-grade urothelial carcinoma of the bladder. World J Urol 25:297–302

    Article  PubMed  Google Scholar 

  • Shaffer LG, Lupski JR (2000) Molecular mechanisms for constitutional chromosomal rearrangements in humans. Annu Rev Genet 34:297–329

    Article  PubMed  CAS  Google Scholar 

  • Stern MC, Umbach DM, van Gils CH, Lunn RM, Taylor JA (2001) DNA repair gene XRCC1 polymorphisms, smoking, and bladder cancer risk. Cancer Epidemiol Biomarkers Prev 10:125–131

    PubMed  CAS  Google Scholar 

  • Stern MC, Umbach DM, Lunn RM, Taylor JA (2002) DNA repair gene XRCC3 codon 241 polymorphism, its interaction with smoking and XRCC1 polymorphisms, and bladder cancer risk. Cancer Epidemiol Biomarkers Prev 11:939–943

    PubMed  CAS  Google Scholar 

  • Swiatkowski Seifert HH, Steinhoff C et al (2003) Activities of MAP-kinase pathways in normal uroepithelial cells and urothelial carcinoma cell lines. Exp Cell Res 282:48–57

    Article  Google Scholar 

  • Taniguchi T, Tischkowitz M, Ameziane N et al (2003) Disruption of the Fanconi anemia-BRCA pathway in cisplatin-sensitive ovarian tumors. Nat Med 9:568–574

    Article  PubMed  CAS  Google Scholar 

  • Tarapore P, Horn HF, Tokuyama Y, Fukasawa K (2001) Direct regulation of the centrosome duplication cycle by the p53-p21Waf1/Cip1 pathway. Oncogene 20:3173–3184

    Article  PubMed  CAS  Google Scholar 

  • Tort F, Bartkova J, Sehested M et al (2006) Retinoblastoma pathway defects show differential ability to activate the constitutive DNA damage response in human tumorigenesis. Cancer Res 66:10258–10263

    Article  PubMed  CAS  Google Scholar 

  • van Rhijn BW, Vis AN, van der Kwast TH et al (2003) Molecular grading of urothelial cell carcinoma with fibroblast growth factor receptor 3 and MIB-1 is superior to pathologic grade for the prediction of clinical outcome. J Clin Oncol 21:1912–1921

    Article  PubMed  CAS  Google Scholar 

  • Varga T, Aplan PD (2005) Chromosomal aberrations induced by double strand DNA breaks. DNA Repair (Amst) 4:1038–1046

    Article  CAS  Google Scholar 

  • Weir BA, Woo MS, Getz G et al (2007) Characterizing the cancer genome in lung adenocarcinoma. Nature 450:893–898

    Article  PubMed  CAS  Google Scholar 

  • Windhofer F, Krause S, Hader C, Schulz WA, Florl AR (2008) Distinctive differences in DNA double-strand break repair between normal urothelial and urothelial carcinoma cells. Mutat Res 638:56–65

    PubMed  CAS  Google Scholar 

  • Wu X, Amos CI, Zhu Y et al (2003) Telomere dysfunction: a potential cancer predisposition factor. J Natl Cancer Inst 95:1211–1218

    Article  PubMed  CAS  Google Scholar 

  • Wu X, Gu J, Grossman HB et al (2006) Bladder cancer predisposition: a multigenic approach to DNA-repair and cell-cycle-control genes. Am J Hum Genet 78:464–479

    Article  PubMed  CAS  Google Scholar 

  • Wu XR (2005) Urothelial tumorigenesis: a tale of divergent pathways. Nat Rev Cancer 5:713–725

    Article  PubMed  CAS  Google Scholar 

  • Yu CE, Oshima J, Fu YH et al (1996) Positional cloning of the Werner’s syndrome gene. Science 272:258–262

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Work in our group on this topic was financially supported by the Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang A. Schulz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Florl, A.R., Schulz, W.A. Chromosomal instability in bladder cancer. Arch Toxicol 82, 173–182 (2008). https://doi.org/10.1007/s00204-008-0280-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-008-0280-3

Keywords

Navigation