Skip to main content
Log in

Hepatotoxin-induced hypertyrosinemia and its toxicological significance

  • Molecular Toxicology
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

A 1H Nuclear Magnetic Resonance (NMR) spectroscopic investigation of the effects of single doses of four model hepatotoxins on male Sprague–Dawley rats showed that hypertyrosinemia was induced by three of the treatments (ethionine 300 mg/kg, galactosamine hydrochloride 800 mg/kg and isoniazid 400 mg/kg) but not by the fourth (thioacetamide 200 mg/kg). Concomitant histopathological and clinical chemistry analyses showed that hypertyrosinemia could occur with or without substantial hepatic damage and that substantial hepatic damage could occur without hypertyrosinemia. However, in the rats dosed with galactosamine hydrochloride, which showed highly variable amounts of liver damage at ca. 24 h after dosing, a clear relationship was found between the degree of hypertyrosinemia and the extent of the hepatic necrosis induced. In line with the cause of clinically observed Type II Tyrosinemia, we consider that the critical event in the onset of hepatotoxin-induced hypertyrosinemia is likely to be a reduction in hepatic tyrosine aminotransferase (TAT) activity. We discuss mechanisms by which TAT activity could be lost with special consideration given to pyridoxal 5′-phosphate (P5P) depletion and to the inhibition of protein synthesis. This analysis may have implications for the interpretation of clinical measures of liver status such as Fischer’s ratio and the branched-chain tyrosine ratio (BTR).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Anthony ML, Sweatman BC, Beddell CR, Lindon JC, Nicholson JK (1994) Pattern recognition classification of the site of nephrotoxicity based on metabolic data derived from proton nuclear magnetic resonance spectra of urine. Mol Pharmacol 46:199–211

    PubMed  CAS  Google Scholar 

  • Azuma Y, Maekawa M, Kuwabara Y, Nakajima T, Taniguchi K, Kanno T (1989) Determination of branched-chain amino acids and tyrosine in serum of patients with various hepatic diseases, and its clinical usefulness. Clin Chem 35:1399–1403

    PubMed  CAS  Google Scholar 

  • Beckwith-Hall BM, Nicholson JK, Nicholls AW, Foxall PJD, Lindon JC, Connor SC, Abdi M, Connelly J, Holmes E (1998) Nuclear magnetic resonance spectroscopic and principal components analysis investigations into biochemical effects of three model hepatotoxins. Chem Res Toxicol 11:260–272

    Article  PubMed  CAS  Google Scholar 

  • Bollard ME, Keun HC, Beckonert O, Ebbels TM, Antti H, Nicholls AW, Shockor JP, Cantor GH, Stevens G, Lindon JC, Holmes E, Nicholson JK (2005) Comparative metabonomics of differential hydrazine toxicity in the rat and mouse. Toxicol Appl Pharmacol 204:135–151

    Article  PubMed  CAS  Google Scholar 

  • Cascales C, Martin-Sanz P, Pittner RA, Hopewell R, Brindley DN, Cascales M (1986) Effects of an antitumoural rhodium complex on thioacetamide-induced liver tumour in rats. Changes in the activities of ornithine decarboxylase, tyrosine aminotransferase and of enzymes involved in fatty acid and glycerolipid synthesis. Biochem Pharmacol 35:2655–2661

    Article  PubMed  CAS  Google Scholar 

  • Clayton TA, Lindon JC, Everett JR, Charuel C, Hanton G, Le Net J-L, Provost J-P, Nicholson JK (2003) An hypothesis for a mechanism underlying hepatotoxin-induced hypercreatinuria. Arch Toxicol 77:208–217

    PubMed  CAS  Google Scholar 

  • Clayton TA, Lindon JC, Everett JR, Charuel C, Hanton G, Le Net J-L, Provost J-P, Nicholson JK (2004) Hepatotoxin-induced hypercreatinaemia and hypercreatinuria: their relationship to one another, to liver damage and to weakened nutritional status. Arch Toxicol 78:86–96

    Article  PubMed  CAS  Google Scholar 

  • Coomes MW (1997) Amino acid metabolism. In: Devlin TM (ed) Textbook of biochemistry with clinical correlations, 4th edn. Wiley-Liss, New York

    Google Scholar 

  • Decker K, Keppler D (1974) Galactosamine hepatitis: key role of the nucleotide deficiency period in the pathogenesis of cell injury and cell death. Rev Physiol Biochem Pharmacol 71:77–106

    Article  PubMed  CAS  Google Scholar 

  • Ebadi M, Gessert CF, Al-Sayegh A (1982) Drug-pyridoxal phosphate interactions. Q Rev Drug Metab Interact 4:289–331

    CAS  Google Scholar 

  • Erill S, Palacios G, Costa J, Laporte JR (1977) A comparison of the liver toxicity of isoniazid, cyanazide and their acetyl derivatives. In: Bundgaard, et al (eds) Drug design and adverse reactions. Munksgaard, Copenhagen, pp 89–98

    Google Scholar 

  • Evans PJ (1981) The regulation of hepatic tyrosine aminotransferase. Biochim Biophys Acta 677:433–444

    PubMed  CAS  Google Scholar 

  • Farber E (1967) Ethionine fatty liver. Adv Lipid Res 5:119–183

    PubMed  CAS  Google Scholar 

  • Fontana L, Moreira E, Torres MI, Fernandez MI, Rios A, Sanchez de Medina F, Gil A (1996) Serum amino acid changes in rats with thioacetamide-induced liver cirrhosis. Toxicology 106:197–206

    Article  PubMed  CAS  Google Scholar 

  • Fujikake Y (1981) A new rapid and simplified assay of major free amino acids in plasma and its clinical application (II). Determination of plasma free amino acids in various diseases of the liver and its application to differential diagnosis. Acta Sch Med Univ Gifu 29:822–837

    Google Scholar 

  • Groenewald JV, Terblanche SE, Oelofsen W (1984) Tyrosine aminotransferase: characteristics and properties. Int J Biochem 16:1–18

    Article  PubMed  CAS  Google Scholar 

  • Gross-Mesilaty S, Hargrove JL, Ciechanover A (1997) Degradation of tyrosine aminotransferase (TAT) via the ubiquitin-proteasome pathway. FEBS Lett 405:175–180

    Article  PubMed  CAS  Google Scholar 

  • Hamm HH, Seubert W (1977) On the mechanism of inactivation and ATP-dependent reactivation of rat liver tyrosine aminotransferase. Z Naturforsch 32:777–780

    CAS  Google Scholar 

  • Hershko A (2005) The ubiquitin system for protein degradation and some of its roles in the control of the cell division cycle. Cell Death Differ 12:1191–1197

    Article  PubMed  CAS  Google Scholar 

  • Hershko A, Tomkins GM (1971) Studies on the degradation of tyrosine aminotransferase in hepatoma cells in culture. J Biol Chem 246:710–714

    PubMed  CAS  Google Scholar 

  • Holmes E, Nicholls AW, Lindon JC, Connor SC, Connelly JC, Haselden JN, Damment SJ, Spraul M, Neidig P, Nicholson JK (2000) Chemometric models for toxicity classification based on NMR spectra of biofluids. Chem Res Tox 13:471–478

    Article  CAS  Google Scholar 

  • Hunter AL, Holscher MA, Neal RA (1977) Thioacetamide-induced hepatic necrosis. Involvement of the mixed-function oxidase enzyme system. J Pharmacol Exp Ther 200:439–448

    PubMed  CAS  Google Scholar 

  • Ito S (2003) IFPCS presidential lecture. A chemist’s view of melanogenesis. Pigment Cell Res 16:230–236

    Article  PubMed  CAS  Google Scholar 

  • Joyeux H, Matias J, Saint-Aubert B, Astre C, Gouttebel MC, Vedrenne JB, Deneux L (1994–1995) Serum marker of the functional hepatic mass after extensive hepatectomy. The branched/aromatic amino acid ratio. Experimental and clinical studies. Chirurgie 120:283–288

    Google Scholar 

  • Kawamura-Yasui N, Kaito M, Nakagawa N, Fujita N, Ikoma J, Gabazza EC, Watanabe S, Adachi Y (1999) Evaluating response to nutritional therapy using the branched-chain amino acid/tyrosine ratio in patients with chronic liver disease. J Clin Lab Anal 13:31–34

    Article  PubMed  CAS  Google Scholar 

  • Kroger F, Gratz R (1979) Influence of DL-ethionine on the induction of tyrosine aminotransferase in the rat liver. Int J Biochem 10:1025–1031

    Article  PubMed  CAS  Google Scholar 

  • Kroger H, Gratz R (1984) Induction of tyrosine aminotransferase under the influence of D-galactosamine. Int J Biochem 16:703–705

    Article  PubMed  CAS  Google Scholar 

  • Lindon JC, Keun HC, Ebbels TM, Pearce JM, Holmes E, Nicholson JK (2005) The Consortium for Metabonomic Toxicology (COMET): aims, activities and achievements. Pharmacogenomics 6:691–699

    Article  PubMed  CAS  Google Scholar 

  • Litwack G, Schmidt TJ (1997) Biochemistry of hormones I: polypeptide hormones. In: Devlin TM (ed) Textbook of biochemistry with clinical correlations, 4th edn. Wiley-Liss, New York

    Google Scholar 

  • Mortishire-Smith RJ, Skiles GL, Lawrence JW, Spence S, Nicholls AW, Johnson BA, Nicholson JK (2004) Use of metabonomics to identify impaired fatty acid metabolism as the mechanism of a drug-induced toxicity. Chem Res Toxicol 17:165–173

    Article  PubMed  CAS  Google Scholar 

  • Nemeth S (1978) The effect of stress or glucose feeding on hepatic tyrosine aminotransferase activity and liver and plasma tyrosine level of intact and adrenalectomized rats. Horm Metab Res 10:144–147

    Article  PubMed  CAS  Google Scholar 

  • Newsholme EA, Leech AR (1988) Biochemistry for the medical sciences. Wiley, Chichester, etc

  • Nicholson JK, Foxall PJD, Spraul M, Farrant RD, Lindon JC (1995) 750 MHz 1H and 1H-13C NMR spectroscopy of human blood plasma. Anal Chem 67:793–811

    Article  PubMed  CAS  Google Scholar 

  • Nicholson JK, Gartland KP (1989) 1H NMR studies on protein binding of histidine, tyrosine and phenylalanine in blood plasma. NMR Biomed 2:77–82

    Article  PubMed  CAS  Google Scholar 

  • Nicholson JK, Lindon JC, Holmes E (1999) Metabonomics: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 29:1181–1189

    Article  PubMed  CAS  Google Scholar 

  • Nicholson JK, Wilson ID (1989) High-resolution proton magnetic resonance spectroscopy of biological fluids. Prog Nucl Mag Res Spec 21:449–501

    Article  CAS  Google Scholar 

  • Ozturk M, Lemonnier F, Cresteil D, Scotto J, Lemonnier A (1984) Methionine metabolism and ultrastructural changes with D-galactosamine in isolated rat hepatocytes. Chem Biol Interact 51:63–76

    Article  PubMed  CAS  Google Scholar 

  • Pugge HR, Torrecilla A, Pellanda RJ (1979) Induction of tyrosine aminotransferase in galactosamine hepatitis. Acta Gastroenterol Latinoam 9:159–163

    PubMed  CAS  Google Scholar 

  • Rees KR, Rowland GF, Varcoe JS (1966) The metabolism of tritiated thioacetamide in the rat. Int J Cancer 1:197–206

    Article  Google Scholar 

  • Russo PA, Mitchell GA, Tanguay RM (2001) Tyrosinemia: a review. Pediatr Dev Pathol 4:212–221

    Article  PubMed  CAS  Google Scholar 

  • Sanins SM, Nicholson JK, Elcombe C, Timbrell JA (1990) Hepatotoxin-induced hypertaurinuria: a proton NMR study. Arch Toxicol 64:407–411

    Article  PubMed  CAS  Google Scholar 

  • Schmid E, Schmid W, Jantzen M, Mayer D, Jastorff B, Schutz G (1987) Transcription activation of the tyrosine aminotransferase gene by glucocorticoids and cAMP in primary hepatocytes. Eur J Biochem 165:499–506

    Article  PubMed  CAS  Google Scholar 

  • Sequeira S, So PW, Everett JR, Elcombe CR, Kelvin AS, Nicholson JK (1990) 1H-NMR spectroscopy of biofluids and the investigation of xenobiotic-induced changes in liver biochemistry. J Pharm Biomed 8:945–949

    Article  CAS  Google Scholar 

  • Shelly LL, Yeoh GC (1991) Effects of dexamethasone and cAMP on tyrosine aminotransferase expression in cultured fetal rat hepatocytes. Eur J Biochem 199:475–481

    Article  PubMed  CAS  Google Scholar 

  • Shiman R, Gray DW (1998) Formation and fate of tyrosine. Intracellular partitioning of newly synthesized tyrosine in mammalian liver. J Biol Chem 273:34760–34769

    Article  PubMed  CAS  Google Scholar 

  • Skakun NP, Shmanko VV (1986) Efficacy of antioxidants in isoniazid-induced damage of the liver. Farmakol Toksikol 49:86–89

    PubMed  CAS  Google Scholar 

  • Slivka YI (1989) Comparative characterisation of hepatotoxicity of isoniazid, rifampicine and pyrazinamide. Farmakol Toksikol 52:82–85

    PubMed  CAS  Google Scholar 

  • Thomas BH, Solomonraj G (1977) Drug interaction with isoniazid metabolism in rats. J Pharmacol Sci 66:1322–1326

    Article  CAS  Google Scholar 

  • Timbrell JA (1991) Principles of biochemical toxicology, 2nd edn. Taylor and Francis, London and Washington DC

    Google Scholar 

  • Waner T, Nyska A (1991) The toxicological significance of decreased activities of blood alanine and aspartate aminotransferase. Vet Res Commun 15:73–78

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the assistance of Brigitte Geffray, Pfizer Global R&D, Amboise (statistical analysis), the technical staff of Pfizer Global R&D, Amboise (animal work) the facilities and assistance provided by the ULIRS NMR Service at Queen Mary and Westfield College, London and the financial support of Pfizer Global R&D to T.A.C. All of the experiments performed complied with the relevant national legislation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremy K. Nicholson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clayton, T.A., Lindon, J.C., Everett, J.R. et al. Hepatotoxin-induced hypertyrosinemia and its toxicological significance. Arch Toxicol 81, 201–210 (2007). https://doi.org/10.1007/s00204-006-0136-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-006-0136-7

Keywords

Navigation