Skip to main content
Log in

Mutagenicity of the mycotoxin patulin in cultured Chinese hamster V79 cells, and its modulation by intracellular glutathione

  • Genotoxicity
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Because the ability of the mycotoxin patulin (PAT) to cause gene mutations in mammalian cells is still ambiguous, we have studied the mutagenicity of PAT at the hypoxanthine–guanine phosphoribosyltransferase (HPRT) gene locus in cultured Chinese hamster V79 cells with normal, depleted, and elevated glutathione (GSH) levels. PAT was more toxic to GSH-depleted cells than to normal cells and caused an increase of the intracellular GSH level in normal and GSH-depleted cells. It also caused synchronization of the cell cycle due to a temporary accumulation of cells in the G2/M phase; this G2/M arrest was more persistent in GSH-depleted than in normal cells. PAT gave rise to a clear and concentration-dependent induction of HPRT mutations at non-cytotoxic concentrations in V79 cells with normal GSH level; the lowest PAT concentration causing a significant number of mutant cells was 0.3 micromolar, and the mutagenic potency of PAT equaled that of the established mutagen 4-nitroquinoline-N-oxide. The mutagenicity of PAT was again more pronounced, by a factor of about three, in GSH-depleted V79 cells. Elevated GSH levels abolished all observed effects of PAT. These data support the notion that PAT is a mutagenic mycotoxin, in particular in cells with low GSH concentration. The ability of PAT to cause gene mutations in mammalian cells might have a bearing on its carcinogenicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ATM:

Ataxia telangiectasia mutated kinase

ATR:

ATM-related kinase

BSO:

Buthionine sulfoximine

Cdk:

Cyclin-dependent kinase

DMEM:

Dulbecco’s modified Eagle medium

DMSO:

Dimethyl sulfoxide

DTNB:

5,5′-Dithiobis-(2-nitrobenzoic acid)

EDTA:

Ethylenediaminetetraacetic acid

FCS:

Fetal calf serum

GSH:

Glutathione

GSH-EE:

Glutathione ethyl ester

HPRT:

Hypoxanthine-guanine phosphoribosyltransferase

MClB:

Monochlorobimane

NQO:

4-Nitroquinoline-N-oxide

PAT:

Patulin, 4-hydroxy-4H-furo(3,2c)pyran-2(6H)-one

PBS-CMF:

Phosphate-buffered saline, calcium- and magnesium-free

6-TG:

6-Thioguanine

UV:

Ultraviolet

References

  • Alves I, Oliveira NG, Laires A, Rodrigues AS, Rueff J (2000) Induction of micronuclei and chromosomal aberrations by the mycotoxin patulin in mammalian cells: role of ascorbic acid as a modulator of patulin clastogenicity. Mutagenesis 15:229–234

    Article  CAS  PubMed  Google Scholar 

  • Anderson ME, Meister A (1989) Glutathione monoesters. Anal Biochem 183:16–20

    CAS  PubMed  Google Scholar 

  • Barhoumi R, Burghardt RC (1996) Kinetic analysis of the chronology of patulin- and gossypol-induced cytotoxicity in vitro. Fundam Appl Toxicol 30:290–297

    Article  CAS  PubMed  Google Scholar 

  • Becci PJ, Hess FG, Johnson WD, Gallo MA, Babish JG, Dailey RE, Parent RA (1981) Long-term carcinogenicity and toxicity studies of patulin in the rat. J Appl Toxicol 1:256–261

    CAS  PubMed  Google Scholar 

  • Chaung W, Mi LJ, Boorstein RJ (1997) The p53 status of Chinese hamster V79 cells frequently used for studies on DNA damage and DNA repair. Nucleic Acids Res 25:992–994

    Article  CAS  PubMed  Google Scholar 

  • Choi YH, Lee WH, Park KY, Zhang L (2000) p53-independent induction of p21 (WAF1/CIP1), reduction of cyclin B1 and G2/M arrest by the isoflavone genistein in human prostate carcinoma cells. Jpn J Cancer Res 91:164–173

    CAS  PubMed  Google Scholar 

  • Cook JA, Mitchell JB (1995) Measurement of thiols in cell populations from tumor and normal tissue. Methods Enzymol 251:203–212

    CAS  PubMed  Google Scholar 

  • Dickens F, Jones HE (1961) Carcinogenic activity of a series of reactive lactones and related substances. Br J Cancer 15:85–100

    CAS  PubMed  Google Scholar 

  • Drusch S, Ragab W (2003) Mycotoxins in fruits, fruit juices, and dried fruits. J Food Prot 66:1514–1527

    CAS  PubMed  Google Scholar 

  • Fliege R, Metzler M (1999) The mycotoxin patulin induces intra- and intermolecular protein crosslinks in vitro involving cysteine, lysine, and histidine side chains, and alpha-amino groups. Chem-Biol Interact 123:

  • Fliege R, Metzler M (2000a) Electrophilic properties of patulin. Adduct structures and reaction pathways with 4-bromothiophenol and other model nucleophiles. Chem Res Toxicol 13:363–372

    Article  CAS  PubMed  Google Scholar 

  • Fliege R, Metzler M (2000b) Electrophilic properties of patulin. N-acetylcysteine and glutathione adducts. Chem Res Toxicol 13:373–381

    Article  CAS  PubMed  Google Scholar 

  • Ford DK, Yerganian G (1958) Observations on the chromosomes of Chinese hamster cells in tissue culture. J Natl Cancer Inst 21:393–425

    CAS  PubMed  Google Scholar 

  • Huang ZA, Yang H, Chen C, Zeng Z, Lu SC (2000) Inducers of gamma-glutamylcysteine synthetase and their effects on glutathione synthetase expression. Biochim Biophys Acta 1493:48–55

    CAS  PubMed  Google Scholar 

  • IARC (1986) Some naturally occurring and synthetic food components, furocoumarins and ultraviolet radiation. In: Monographs an the evaluation of the carcinogenic risk of chemicals to humans, vol 40. IARC, Lyon, pp 83–98

  • Jackson LS, Beacham-Bowden T, Keller SE, Adhikari C, Taylor KT, Chirtel SJ, Merker RI (2003) Apple quality, storage, and washing treatments affect patulin levels in apple cider. J Food Prot 66:618–624

    CAS  PubMed  Google Scholar 

  • Köhler C (2002) Thesis, Expression von P-Glykoprotein (MDR-1), MRP-1 und LRO in humanen AII und Clara-Zell-ähnlichen Tumorzelllinien sowie normalen humanen Bronchialepithelzellen. University of Halle-Wittenberg

  • Kojima S, Teshima K, Yamaoka K (2000) Mechanisms involved in the elevation of glutathione in RAW 264.7 cells exposed to low doses of gamma-rays. Anticancer Res 20:1589–1594

    CAS  PubMed  Google Scholar 

  • Lee KS, Roschenthaler RJ (1986) DNA-damaging activity of patulin in Escherichia coli. Appl Environ Microbiol 52:1046–1054

    CAS  PubMed  Google Scholar 

  • Lehmann L, Franz U, Metzler M (2003) Genotoxic potential of the mycotoxin patulin in cultured mammalial fibroblasts. Naunyn-Schmiedeberg’s Arch Pharmacol 367: R166

  • Lehmann L, Metzler M (2004) Bisphenol A and its methylated congeners inhibit growth and interfere with microtubules in human fibroblasts. Chem-Biol Interact 147:273–285

    Google Scholar 

  • Liu BH, Yu FY, Wu TS, Li SY, Su MC, Wang MC, Shih SM (2003) Evaluation of genotoxic risk and oxidative DNA damage in mammalian cells exposed to mycotoxins, patulin and citrinin. Toxicol Appl Pharmacol 191:255–263

    Article  CAS  PubMed  Google Scholar 

  • Mahfoud R, Maresca M, Garmy N, Fantini J (2002) The mycotoxin patulin alters the barrier function of the intestinal epithelium: mechanism of action of the toxin and protective effects of glutathione. Toxicol Appl Pharmacol 181:209–218

    Article  CAS  PubMed  Google Scholar 

  • Marchionatti A, Alisio A, Diaz de Barboza G, Baudino V, Tolosa de Talamoni N (2001) dl-Buthionine-S,R-sulfoximine affects intestinal alkaline phosphatase activity. Comp Biochem Physiol C Toxicol Pharmacol 129:85–91

    Article  CAS  PubMed  Google Scholar 

  • Moellering D, McAndrew J, Patel RP, Forman HJ, Mulcahy RT, Jo H, Darley-Usmar VM (1999) The induction of GSH synthesis by nanomolar concentrations of NO in endothelial cells: a role for gamma-glutamylcysteine synthetase and gamma-glutamyl transpeptidase. FEBS Lett 448:292–296

    Article  CAS  PubMed  Google Scholar 

  • Oleinick NL, Xue LY, Friedman LR, Donahue LL, Biaglow JE (1988) Inhibition of radiation-induced DNA-protein cross-link repair by glutathione depletion with l-buthionine sulfoximine. NCI Monogr: 225–229

    Google Scholar 

  • Osswald H, Frank HK, Komitowski D, Winter H (1978) Long-term testing of patulin administered orally to Sprague–Dawley rats and Swiss mice. Food Cosmet Toxicol 16:243–247

    CAS  PubMed  Google Scholar 

  • Pearce AK, Humphrey TC (2001) Integrating stress-response and cell-cycle checkpoint pathways. Trends Cell Biol 11:426–433

    Article  CAS  PubMed  Google Scholar 

  • Pfeiffer E, Gross K, Metzler M (1998) Aneuploidogenic and clastogenic potential of the mycotoxins citrinin and patulin. Carcinogenesis 19:1313–1318

    Article  CAS  PubMed  Google Scholar 

  • Revesz L, Edgren M (1984) Glutathione-dependent yield and repair of single-strand DNA breaks in irradiated cells. Br J Cancer Suppl 6:55–60

    CAS  PubMed  Google Scholar 

  • Riley RT, Showker JL (1991) The mechanism of patulin’s cytotoxicity and the antioxidant activity of indole tetramic acids. Toxicol Appl Pharmacol 109:108–126

    Article  CAS  PubMed  Google Scholar 

  • Rushmore TH, Kong AN (2002) Pharmacogenomics, regulation and signaling pathways of phase I and II drug metabolizing enzymes. Curr Drug Metab 3:481–490

    CAS  PubMed  Google Scholar 

  • Rychlik M, Schieberle P (1999) Quantification of the mycotoxin patulin by a stable isotope dilution assay. J Agric Food Chem 47:3749–3755

    Article  CAS  PubMed  Google Scholar 

  • Schuliga M, Chouchane S, Snow ET (2002) Upregulation of glutathione-related genes and enzyme activities in cultured human cells by sublethal concentrations of inorganic arsenic. Toxicol Sci 70:183–192

    Article  CAS  PubMed  Google Scholar 

  • Schumacher DM, Lehmann L, Metzler M (2003) DNA–DNA-cross-linking potential of patulin. Naunyn-Schmiedeberg’s Arch Pharmacol 367: R166

  • Shackelford RE, Kaufmann WK, Paules RS (1999) Cell cycle control, checkpoint mechanisms, and genotoxic stress. Environ Health Perspect 107 Suppl 1:5-24

    Google Scholar 

  • Snyder RD, Lachmann PJ (1989) Thiol involvement in the inhibition of DNA repair by metals in mammalian cells. Mol Toxicol 2:117–128

    CAS  PubMed  Google Scholar 

  • Tangni EK, Theys R, Mignolet E, Maudoux M, Michelet JY, Larondelle Y (2003) Patulin in domestic and imported apple-based drinks in Belgium: occurrence and exposure assessment. Food Addit Contam 20:482–489

    Article  CAS  PubMed  Google Scholar 

  • Thust R, Kneist S, Mendel J (1982) Patulin, a further clastogenic mycotoxin, is negative in the SCE assay in Chinese hamster V79-E cells in vitro. Mutat Res 103:91–97

    Article  CAS  PubMed  Google Scholar 

  • Umeda M, Tsutsui T, Saito M (1977) Mutagenicity and inducibility of DNA single-strand breaks and chromosome aberrations by various mycotoxins. Gann 68:619–625

    CAS  PubMed  Google Scholar 

  • Wurgler FE, Friederich U, Schlatter J (1991) Lack of mutagenicity of ochratoxin A and B, citrinin, patulin and cnestine in Salmonella typhimurium TA102. Mutat Res 261:209–216

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Ute Franz for helping with the studies on the cell-cycle distribution, Aleka Vavelidou for microscopic analysis of the membrane integrity, and Jörg Wagner and Lars Rohnstock for their help with the HPRT assay. This study has been supported by the Deutsche Forschungsgemeinschaft (Grant Me 574/14–2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leane Lehmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schumacher, D.M., Metzler, M. & Lehmann, L. Mutagenicity of the mycotoxin patulin in cultured Chinese hamster V79 cells, and its modulation by intracellular glutathione. Arch Toxicol 79, 110–121 (2005). https://doi.org/10.1007/s00204-004-0612-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-004-0612-x

Keywords

Navigation