Skip to main content
Log in

Protective effect of resveratrol against 6-hydroxydopamine-induced impairment of renal p-aminohippurate transport

  • Organ Toxicity and Mechanisms
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

In the present study, the effects of resveratrol on 6-hydroxydopamine (6-OHDA)-induced p-aminohippurate (PAH) transport impairment were investigated in vitro using rat renal cortical slices. Cisplatin and cephaloridine (CPH), known nephrotoxins, were used as positive controls. In one series of experiments, renal cortical slices were incubated in a cisplatin-containing medium or a cisplatin-free medium. In another series of experiments, renal cortical slices were incubated in a CPH-containing medium, in a CPH- and probenecid-containing medium, or in a CPH-free medium. Subsequently, for each series of experiments kidney slices were incubated in a media containing PAH or tetraethylammonium. In a further series of experiments, renal cortical slices were incubated in a 6-OHDA-containing medium and in a 6-OHDA-free medium. In another series of experiments, renal cortical slices were incubated in a medium containing 50 µM 6-OHDA, in a 6-OHDA- and resveratrol-containing medium or in a 6-OHDA- and resveratrol-free medium. Subsequently, for each series of experiments kidney slices were incubated in media containing PAH. The results of this study in which slices were incubated in 6-OHDA-containing media indicate that 6-OHDA induced a time- and concentration-dependent decrease in PAH accumulation by renal cortical slices. Resveratrol inhibited the 6-OHDA-induced time-dependent decrease of PAH accumulation in a concentration-dependent manner. Therefore, 6-OHDA causes functional injuries of renal proximal tubule cell membrane, thus leading to impairment of transport processes across the cell membrane and to nephrotoxicity. Resveratrol has a nephroprotective effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andrew R, Watson DG, Best SA, Midgley JM, Wenlong H, Petty RK (1993) The determination of hydroxydopamines and other trace amines in the urine of parkinsonian patients and normal controls. Neurochem Res 18:1175–1177

    CAS  PubMed  Google Scholar 

  • Appenroth D, Braunlich H (1981) Effect of sympathectomy with 6-hydroxydopamine on the renal excretion of water and electrolytes in developing rats. Acta Biol Med Ger 40:1715–1721

    CAS  PubMed  Google Scholar 

  • Bertelli AA, Giovannini L, Stradi R, Urien S, Tillement JP, Bertelli A (1996) Kinetics of trans- and cis-resvertrol (3,4′,5-trihydroxystilbene) after red wine oral administration in rats. Int J Clin Pharmacol Res 16:77–81

    CAS  PubMed  Google Scholar 

  • Bertelli AA, Migliori M, Panichi V, Origlia N, Filippi C, Das DK, Giovannini L (2002) Resveratrol, a component of wine and grapes, in the prevention of kidney disease. Ann N Y Acad Sci 957:230–238

    CAS  PubMed  Google Scholar 

  • Beuter W, Cojocel C, Muller W, Donaubauer HH, Mayer D (1989) Peroxidative damage and nephrotoxicity of dichlorovinylcysteine in mice. J Appl Toxicol 9:181–186

    CAS  PubMed  Google Scholar 

  • Braunlich H, Rossler S, Gerhardt S (1993) Influence of sympathetic nervous system on dexmethasone-stimulated renal tubular transport of p-aminohippurate in young rats. Dev Pharmacol Ther 20:86–92

    CAS  PubMed  Google Scholar 

  • Cadenas S, Barja G (1999) Resveratrol, melatonin, vitamin E, and PBN protect against renal oxidative DNA damage induced by the kidney carcinogen KBrO3. Free Radic Biol Med 26:1531–1537

    Article  CAS  PubMed  Google Scholar 

  • Cohen G, Heikkila RE (1974) The generation of hydrogen peroxide, superoxide radical, and hydroxyl radical by 6-hydroxydopamine, dialuric acid, and related cytotoxic agents. J Biol Chem 249:2447–2452

    CAS  PubMed  Google Scholar 

  • Cojocel C (1990) Biochemical aspects of the renal tolerance for cefpirome and other cephalosporins. Arzneimittelforschung 40:1140–1144

    CAS  PubMed  Google Scholar 

  • Cojocel C, Lock EA (1999) The kidney. In: Marquardt HH, Schaefer SG, McClellan R, Welsch F (eds) Toxicology. Academic Press, San Diego, pp 297–330

  • Cojocel C, Hannemann J, Baumann K (1985) Cephaloridine-induced lipid peroxidation initiated by reactive oxygen species as a possible mechanism of cephaloridine nephrotoxicity. Biochim Biophys Acta 834:402–410

    CAS  PubMed  Google Scholar 

  • Cojocel C, Göttsche U, Tölle K-L, Baumann K (1988) Nephrotoxic potential of first-, second-, and third-generation cephalosporins. Arch Toxicol 62:458–464

    CAS  PubMed  Google Scholar 

  • Cross RJ, Tagart JV (1950) Renal tubular transport: accumulation of p-aminohippurate by rabbit kidney slices. Am J Physiol 161:181–190

    CAS  Google Scholar 

  • Fauconneau B, Waffo-Teguo P, Huguet F, Barrier L, Decendi A, Merillon JM (1997) Comparative study of radical scavenger and antioxidant properties of phenolic compounds from Vitis vinifera cell cultures using in vitro tests. Life Sci 61:2103–2110

    CAS  PubMed  Google Scholar 

  • Giovannini L, Migliori M, Longoni BM, Das DK, Bertelli AA, Panichi V, Filippi C, Bertelli A (2001) Resveratrol, a polyphenol found in wine, reduces ischemia reperfusion injury in rat kidneys. J Cardiovasc Pharmacol 37:262–270

    Article  CAS  PubMed  Google Scholar 

  • Glinka Y, Gassen, M, Youdim MB (1997) Mechanism of 6-hydroxydopamine neurotoxicity. J Neural Transm Suppl 50:55–66

    CAS  PubMed  Google Scholar 

  • Hannemann J, Baumann K (1988) Cisplatin-induced lipid peroxidation and decrease of gluconeogenesis in rat kidney cortex: different effects of antioxidant and radical scavengers. Toxicology 51:119–132

    CAS  PubMed  Google Scholar 

  • Hannemann J, Wunderle W, Baumann K (1992) Nephrotoxicity of acyclovir and cis-diamminedichloroplatinum(II)—effect of co-administration in rats. J Cancer Clin Oncol 118:181–186

    CAS  Google Scholar 

  • He Y, Lee T, Leong SK (2000) 6-Hydroxydopamine induced apoptosis of dopaminergic cells in the rat substantia nigra. Brain Res 858:163–166

    Article  CAS  PubMed  Google Scholar 

  • Hirsch EC (1993) Does oxidative stress participate in nerve cell death in Parkinson’s disease? Eur Neurol 33 [Suppl 1]:52–59

  • Ho AK, McLaughlin R, Chan A, Duffield R (1999) 6-Hydroxydopamine induced cardiac malformations and alterations of the autonomic nervous system in the developing chicken embryo. Jpn J Pharmacol 81:38–47

    Article  CAS  PubMed  Google Scholar 

  • Jameson GNL, Linert W (2000) 6-Hydroxydopamine, dopamine, and ferritin: a cycle of reactions sustaining Parkinson’s disease? In: Poli G, Cadenas E, Packer L (eds) Free radicals in brain pathophysiology. Marcel-Decker, New York, pp 247–272

  • Jang M, Cai L, Udeani GO, Slowing KV, Thomas CF, Beecher CW, Fong HH, Fansworth NR, Kinghorn AD, Mehta RG, Moon RC, Pezzuto JM (1997) Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science 275:218–220

    CAS  PubMed  Google Scholar 

  • Jankovic J (2001) Parkinson’s disease therapy: treatment of early and late disease. Chin Med J (Engl) 114:227–234

    Google Scholar 

  • Jenner P, Olanow CW (1996) Oxidative stress and the pathogenesis of the Parkinson’s disease. Neurology 47 [Suppl 3]:S161–S170

    Google Scholar 

  • Jenner WN, Rose FA (1974) Dopamine 3-O-sulphate, an end product of l-dopa metabolism in Parkinson disease. Nature 252:237–238

    CAS  PubMed  Google Scholar 

  • Kinzel E, Jellinger K, Stachelberger H, Linert W (1999) Iron as catalyst for oxidative stress in the pathogenesis of Parkinson’s disease? Life Sci 65:1973–1976

    Article  PubMed  Google Scholar 

  • Kramer W, Cojocel C, Mayer D (1990) Effects of cephaloridine treatment on transport systems of the rat renal brush border membrane. Biochem Pharmacol Life Sci Adv 9:127–133

    Google Scholar 

  • Kuo C-H, Maita K, Sleight SD, Hook JB (1983) Lipid peroxidation: a possible mechanism of cephaloridine-induced nephrotoxicity. Toxicol Appl Pharmacol 63:292–302

    Google Scholar 

  • Linert W, Jameson GNL (2000) Redox reactions of neurotransmitter possibly involved in the progression of Parkinson’s disease. J Inorg Biochem 79:319–326

    Article  CAS  PubMed  Google Scholar 

  • Masereeuw R, Russel FGM, Miller DS (1996) Multiple pathways for organic anion excretion in renal proximal tubule revealed by confocal microscopy. Am J Physiol 271:F1173–F1182

    CAS  PubMed  Google Scholar 

  • Mayo JC, Sainz RM, Uria H, Antolin I, Esteban MM, Rodriguez C (1998) Melatonin prevents apoptosis induced 6-hydroxydopamine in neuronal cells: implications for Parkinson’s Disease. J Pineal Res 24:179–192

    CAS  PubMed  Google Scholar 

  • Miura D, Miura Y, Yagasaki K (2003) Hypolipidemic action of dietary resveratrol, a phytoalexin in grapes and red wine, in hepatoma-bearing rats. Life Sci 73:1393–1400

    Article  CAS  PubMed  Google Scholar 

  • Miyasaki JM, Martin W, Suchowersky O, Weiner WJ, Lang AE (2002) Practice parameter: initiation of treatment for Parkinson’s disease: an evidence-based review: report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 58:11–17

    Article  CAS  PubMed  Google Scholar 

  • Monteiro HP, Winterbourn CC (1989) 6-Hydroxydopamine releases in iron from ferritin and promotes ferritin-dependent lipid peroxidation. Biochem Pharmacol 38:4177–4182

    Article  CAS  PubMed  Google Scholar 

  • Morales AI, Buitrago JM, Santiago JM, Fernandez-Tagarro M, Lopez-Novoa JM, Perez-Barriocanal F (2002) Protective effect of trans-resveratrol on gentamicin-induced nephrotoxicity. Antioxid Redox Signal 4:893–898

    Article  CAS  PubMed  Google Scholar 

  • Napolitano A, Pezzella A, Prota G (1999) New reaction pathways of dopamine under oxidation conditions: nonenzymatic iron-stress conversion to norepinephrine and the neurotoxins 6-hydroxydopamine and 6,7-dihydroxytetrahydroisoquinoline. Chem Res Toxicol 12:1090–1097

    CAS  PubMed  Google Scholar 

  • Nappi AJ, Vass E, Prota G, Memoli S (1995) The effects of hydroxy radical attack on dopa, dopamine, 6-hydroxydopa and 6-hydroxydopamine. Pigment Cell Res 8:283–293

    CAS  PubMed  Google Scholar 

  • Ochu EE, Rothwell NJ, Waters CM (1998) Caspases mediate 6-hydroxydopamine-induced apoptosis but not necrosis in PC12 cells. J Neurochem 70:2637–2640

    CAS  PubMed  Google Scholar 

  • Oldfield FF, Cowan DL, Sun AY (1991) The involvement of ethanol in the free radical reaction of 6-hydroxydopamine. Neurochem Res 16:83–87

    CAS  PubMed  Google Scholar 

  • Plumbo A, Napolitano A, Barone P, d’Ischia M (1999) Nitrite- and peroxide-dependent oxidation pathways of dopamine: 6-nitrodpamine and 6-hydroxydopamine formation as potential contributory mechanisms of oxidative stress- and nitric oxide-induced neurotoxicity in neuronal degeneration. Chem Res Toxicol 12:1213–1222

    Article  PubMed  Google Scholar 

  • Pritchard JB, Miller DS (1993) Mechanisms of mediating renal secretion of organic anions and cations. Physiol Rev 73:765–796

    CAS  PubMed  Google Scholar 

  • Reiter RJ (1998) Oxidative damage in the central nervous system: protection by melatonin. Prog Neurobiol 56:359–384

    CAS  PubMed  Google Scholar 

  • Sale S, Verschoyle RD, Boocock D, Jones DJ, Wilsher N, Ruparelia KC, Potter GA, Farmer PB, Steward WP, Gescher AJ (2004) Pharmacokinetics in mice and growth-inhibitory properties of the putative chemoprotective agent resveratrol and the synthetic analogue trans 3,4,5,4′-tetramethoxystilbene. Br J Cancer 90:736–744

    Article  CAS  PubMed  Google Scholar 

  • Sato T, Minami S, Okabe T, Igarashi N (1987) Role of renal cathecholamines in the control of sodium and water excretion: lack of natriuresis by endogenous dopamine in the rat kidney. Acta Endocrinol (Copenh) 116:326–332

    Google Scholar 

  • Sekine T, Watanabe N, Hosoyamada M, Kanai Y, Endou H (1997) Expression cloning and characterization of novel multispecific organic anion transporter. J Biol Chem 272:18526–18529

    Article  CAS  PubMed  Google Scholar 

  • Senoh S, Creveling CR, Udenfriend S, Witkop B (1959) Chemical, enzymatic and metabolic studies on the oxidation of dopamine. J Am Chem Soc 81:6236–6340

    CAS  Google Scholar 

  • Slotkin TA, Lau C, Kavlock RJ et al. (1988) Role of sympathetic neurons in biochemical and functional development of the kidney: neonatal sympathectomy with 6-hydroxydopamine. J Pharmacol Exp Ther 246:427–433

    CAS  PubMed  Google Scholar 

  • Smith HW, Finkelstein N, Aliminosa L, Crawford B, Graber M (1945) The renal clearance of substituted hippuric acid derivatives and other aromatic acids in dog and man. J Clin Invest 25:388–404

    Google Scholar 

  • Soleas GJ, Grass L, Josephy PD, Goldberg DM, Diamandis EP (2002) A comparison of anticarcinogenic properties of four red wine polyphenols. Clin Biochem 35:119–124

    Article  CAS  PubMed  Google Scholar 

  • Soto-Otero R, Mendez-Alvarez E, Hermida-Ameijeiras A, Munoz-Patino AM, Labandeira-Garcia JL (2000) Autoxidation and neurotoxicity of 6-hydroxydopamine in the presence of some antioxidants: potential implication in relation to the pathogenesis of Parkinson’s disease. J Neurochem 74:1605–1612

    Article  CAS  PubMed  Google Scholar 

  • Thomas GD, Zambrawski EJ (1991) Acute renal function in chronically sympathectomized deoxycorticosterone acetate-treated miniature swine. Proc Soc Exp Biol Med 197:331–336

    CAS  PubMed  Google Scholar 

  • Tune BM (1994) Renal tubular transport and nephrotoxicity of β-lactam antibiotics: structure-activity relationship. Miner Electrolyte Metab 20:221–231

    CAS  PubMed  Google Scholar 

  • Ullrich KJ (1997) Renal transporters for organic anions and cations. Structural requirements for substrates. J Membr Biol 158:95–107

    Article  CAS  PubMed  Google Scholar 

  • Valentovic M, Meadows MK, Harmon RC, Ball JG, Hong SK, Rankin GO (1999) 2-Amino-chlorophenol toxicity in renal cortical slices from Fischer 344 rats: effect of antioxidants and sulfhydryl agents. Toxicol Appl Pharmacol 161:1–9

    Article  CAS  PubMed  Google Scholar 

  • Vitrac X, Desmouliere A, Brouillaud B, Krisa S, Deffieux G, Barthe N, Rosenbaum J, Merillon JM (2003) Distribution of [14C]-trans-resveratrol, a cancer chemoprotective polyphenol, in mouse tissues after oral administration. Life Sci 72:2219–2233

    Article  CAS  PubMed  Google Scholar 

  • Woodgate A, MacGibbon G, Walton M, Dragunow M (1999) The toxicity of 6-hydroxydopamine on PC12 and P19 cells. Brain Res Mol Brain Res 69:84–92

    CAS  PubMed  Google Scholar 

  • Yousif T, Pooyeh S, Hannemann J, Baumann J, Tauber R, Baumann K (1999) Nephrotoxic and peroxidative potential of meropenem and imipenem/cilastatin in rat and human renal cortical slices and microsomes. Int J Clin Pharmacol Ther 37:475–486

    CAS  PubMed  Google Scholar 

  • Zeewalk, GD, Bernard LP, Nicklas WJ (1998) Role of oxidative stress and the glutathione system in loss of dopamine neurons due to impairment of energy metabolism. J Neurochem 70:1421–1430

    PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by Kuwait University, Research Administration Grant No. MR 01/00.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Cojocel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cojocel, C., Thomson, M.S. Protective effect of resveratrol against 6-hydroxydopamine-induced impairment of renal p-aminohippurate transport. Arch Toxicol 78, 525–532 (2004). https://doi.org/10.1007/s00204-004-0566-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-004-0566-z

Keywords

Navigation