Skip to main content
Log in

Mechanisms of acetate formation and acetate activation in halophilic archaea

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

An Erratum to this article was published on 17 October 2003

Abstract.

The halophilic archaea Halococcus (Hc.) saccharolyticus, Haloferax (Hf.) volcanii, and Halorubrum (Hr.) saccharovorum were found to generate acetate during growth on glucose and to utilize acetate as a growth substrate. The mechanisms of acetate formation from acetyl-CoA and of acetate activation to acetyl-CoA were studied. Hc. saccharolyticus, exponentially growing on complex medium with glucose, formed acetate and contained ADP-forming acetyl-CoA synthetase (ADP-ACS) rather than acetate kinase and phosphate acetyltransferase or AMP-forming acetyl-CoA synthetase. In the stationary phase, the excreted acetate was completely consumed, and cells contained AMP-forming acetyl-CoA synthetase (AMP-ACS) and a significantly reduced ADP-ACS activity. Hc. saccharolyticus, grown on acetate as carbon and energy source, contained only AMP-ACS rather than ADP-ACS or acetate kinase. Cell suspensions of Hc. saccharolyticus metabolized acetate only when they contained AMP-ACS activity, i.e., when they were obtained after growth on acetate or from the stationary phase after growth on glucose. Suspensions of exponential glucose-grown cells, containing only ADP-ACS but not AMP-ACS, did not consume acetate. Similar results were obtained for the phylogenetic distantly related halophilic archaea Hf. volcanii and Hf. saccharovorum. We conclude that, in halophilic archaea, the formation of acetate from acetyl-CoA is catalyzed by ADP-ACS, whereas the activation of acetate to acetyl-CoA is mediated by an inducible AMP-ACS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Additional information

Electronic Publication

An erratum to this article is available at http://dx.doi.org/10.1007/s00203-003-0619-3.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bräsen, C., Schönheit, P. Mechanisms of acetate formation and acetate activation in halophilic archaea. Arch Microbiol 175, 360–368 (2001). https://doi.org/10.1007/s002030100273

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s002030100273

Navigation