Skip to main content
Log in

Diverse key nitrogen cycling genes nifH, nirS and nosZ associated with Pichavaram mangrove rhizospheres as revealed by culture-dependent and culture-independent analyses

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Mangroves are highly productive unique ecosystems harboring diverse unexplored microbial communities that play crucial roles in nutrient cycling as well as in maintaining ecosystem services. The mangrove-associated microbial communities transform the dead vegetation into nutrient sources of nitrogen, phosphorus, potash, etc. To understand the genetic and functional diversity of the bacterial communities involved in nitrogen cycling of this ecosystem, this study explored the diversity and distribution of both the nitrogen fixers and denitrifiers associated with the rhizospheres of Avicennia marina, Rhizophora mucronata, Suaeda maritima, and Salicornia brachiata of the Pichavaram mangroves. A combination of both culturable and unculturable (PCR-DGGE) approaches was adopted to explore the bacterial communities involved in nitrogen fixation by targeting the nifH genes, and the denitrifiers were explored by targeting the nirS and nosZ genes. Across the rhizospheres, Gammaproteobacteria was found to be predominant representing both nitrogen fixers and denitrifiers as revealed by culturable and unculturable analyses. Sequence analysis of soil nifH, nirS and nosZ genes clustered to unculturable, with few groups clustering with culturable groups, viz., Pseudomonas sp. and Halomonas sp. A total of 16 different culturable genera were isolated and characterized in this study. Other phyla like Firmicutes and Actinobacteria were also observed. The PCR-DGGE analysis also revealed the presence of 29 novel nifH sequences that were not reported earlier. Thus, the mangrove ecosystems serve as potential source for identifying unexplored novel microbial communities that contribute to nutrient cycling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andreote FD, Jiménez DJ, Chaves D, Dias ACF, Luvizotto DM, Dini-Andreote F, Fasanella CC, Lopez MV, Baena S, Taketani RG et al (2012) The microbiome of Brazilian mangrove sediments as revealed by metagenomics. PLoS ONE 7:e38600

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arce MI, Gómez R, Suárez ML, Vidal-Abarca MR (2013) Denitrification rates and controlling factors in two agriculturally influenced temporary Mediterranean saline streams. Hydrobiologia 700:169–185

    CAS  Google Scholar 

  • Bagwell C, Rocque J, Smith G, Polson S, Friez M, Longshore J, Lovell C (2002) Molecular diversity of diazotrophs in oligotrophic tropical seagrass bed communities. FEMS Microbiol Ecol 39:113–119

    CAS  PubMed  Google Scholar 

  • Barta Jr, Melichová T, Vaněk D, Picek T, Šantrůčková H (2010) Effect of pH and dissolved organic matter on the abundance of nirK and nirS denitrifiers in spruce forest soil. Biogeochemistry 101:123–132. https://doi.org/10.1007/s10533-010-9430-9

    Article  CAS  Google Scholar 

  • Ben Haim Y, Thompson FL, Thompson CC, Cnockaert MC, Hoste B, Swings J, Rosenberg E (2003) Vibrio coralliilyticus sp. nov., a temperature-dependent pathogen of the coral Pocillopora damicornis. Int J Syst Evol Microbiol 53:309–315

    CAS  PubMed  Google Scholar 

  • Bibi F, Jeong JH, Chung EJ, Jeon CO, Chung YR (2014) Labrenzia suaedae sp. nov., a marine bacterium isolated from a halophyte, and emended description of the genus Labrenzia. Int J Syst Evol Microbiol 64(Pt 4):1116–1122. https://doi.org/10.1099/ijs.0.052860-0

    Article  CAS  PubMed  Google Scholar 

  • Bird C, Martinez Martinez J, O’Donnell AG, Wyman M (2005) Spatial distribution and transcriptional activity of an uncultured clade of planktonic diazotrophic γ-proteobacteria in the Arabian Sea. Appl Environ Microbiol 71:2079–2085

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bowman JP, McCammon SA, Dann AL (2005) Biogeographic and quantitative analyses of abundant uncultivated gamma-proteobacterial clades from marine sediment. Microbial Ecol 49:451–460

    CAS  Google Scholar 

  • Bragazza L, Bardgett RD, Mitchell EA, Buttler A (2015) Linking soil microbial communities to vascular plant abundance along a climate gradient. New Phytol 205:1175–1182

    PubMed  Google Scholar 

  • Braker G, Zhou J, Wu L, Devol AH, Tiedje JM (2000) Nitrite reductase genes (nirK and nirS) as functional markers to investigate diversity of denitrifying bacteria in pacific northwest marine sediment communities. Appl Environ Microbiol 66:2096–2104

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cao HL, Li M, Hong YG, Gu JD (2011) Diversity and abundance of ammonia oxidizing archaea and bacteria in polluted mangrove sediment. Syst Appl Microbiol 34:513–523

    CAS  PubMed  Google Scholar 

  • Carreiro-Silva M, Kiene WE, Golubic S, McClanahan TR (2012) Phosphorus and nitrogen effects on microbial euendolithic communities and their bioerosion rates. Mar Pollut Bull. https://doi.org/10.1016/j.marpolbul.2011.12.013

    Article  PubMed  Google Scholar 

  • Chun J, Lee JH, Jung Y, Kim M, Kim S, Kim BK, Lim YW (2007) EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261

    CAS  PubMed  Google Scholar 

  • Dang HY, Yang JY, Li J, Luan XW, Zhang YB, Gu GZ, Xue RR, Zong MY, Klotz MG (2013) Environment-dependent distribution of the sediment nifH-harboring microbiota in the northern South China Sea. Appl Environ Microbiol 79:121–132

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dunaj SJ, Vallino JJ, Hines ME, Gay M, Kobyljanec C, Rooney-Varga JN (2012) Relationships between soil organic matter, nutrients, bacterial community structure, and the performance of microbial fuel cells. Environ Sci Technol 46(3):1914–1922

    CAS  PubMed  Google Scholar 

  • Falkowski PG, Fenchel T, Delong EF (2008) The microbial engines that drive Earth’s biogeochemical cycles. Science 320:1034–1039

    CAS  PubMed  Google Scholar 

  • Fernandes SO, Michotey VD, Guasco S, Bonin PC, LokaBharathi PA (2012) Denitrification prevails over anammox in tropical mangrove sediments (Goa, India). Mar Environ Res 74:9–19

    CAS  PubMed  Google Scholar 

  • Flores-Mireles AL, Stephen CW, Holguin G (2007) Molecular characterization of diazotrophic and denitrifying bacteria associated with mangrove roots. Appl Environ Microbiol 73:7308–7321

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gao J, Hou LJ, Zheng YL, Liu M, Yin GY, Li XF et al (2016) nirS-Encoding denitrifier community composition, distribution, and abundance along the coastal wetlands of China. Appl Environ Microbiol 100:8573–8582. https://doi.org/10.1007/s00253-016-7659-5

    Article  CAS  Google Scholar 

  • Ghosh A, Dey N, Bera A (2010) Culture independent molecular analysis of bacterial communities in the mangrove sediment of Sundarbans, India. Saline Syst. https://doi.org/10.1186/1746-1448-6-1

    Article  PubMed  PubMed Central  Google Scholar 

  • Giri C, Ochieng E, Tieszen LL, Zhu Z, Singh A, Loveland T, Masek J, Duke N (2011) Status and distribution of mangrove forests of the world using earth observation satellite data. Glob Ecol Biogeogr 20:154–159

    Google Scholar 

  • Green SJ, Prakash O, Gihring TM, Akob DM, Jasrotia P, Jardine PM, Watson DB, Brown SD, Palumbo AV, Kostka JE (2010) Denitrifying bacteria isolated from terrestrial subsurface sediments exposed to mixed-waste contamination. Appl Environ Microbiol 76:3244–3254

    CAS  PubMed  PubMed Central  Google Scholar 

  • Holguin G, Vazquez P, Bashan Y (2001) The role of sediments microorganism in the productivity, conservation and rehabilitation of the mangrove ecosystems: an overview. Biol Fertil Soils 33:265–278

    CAS  Google Scholar 

  • Hong P, Wu X, Shu Y et al (2019) Denitrification characterization of dissolved oxygen microprofiles in lake surface sediment through analyzing abundance, expression, community composition and enzymatic activities of denitrifier functional genes. AMB Expr 9:129

    Google Scholar 

  • Ikeda AC, Bassani LL, Adamoski D, Stringari D, Kava-Cordeiro V, Glienke C, Steffens MBR, Hungria M, Galli-Terasawa LV (2013) Morphological and genetic characterization of endophytic bacteria isolated from roots of different maize genotypes. Microb Ecol 65:154–160

    PubMed  Google Scholar 

  • Jenkins BD, Zehr JP (2008) Molecular approaches to the nitrogen cycle. In: Carpenter EJ, Bronk DA, Mulholland MR, Capone D (eds) Nitrogen in the marine environment. Elsevier, Amsterdam, The Netherlands, pp 1303–1344

    Google Scholar 

  • Kaye JZ, Sylvan JB, Edwards KJ, Baross JA (2011) Halomonas and Marinobacter ecotypes from hydrothermal vent, subseafloor and deep-sea environments. FEMS Microbiol Ecol 75(1):123–133. https://doi.org/10.1111/j.1574-6941.2010.00984.x

    Article  CAS  PubMed  Google Scholar 

  • Labbé N, Parent S, Villemur R (2004) Nitratireductor aquibiodomus gen. nov., sp. nov., a novel alpha-proteobacterium from the marine denitrification system of the Montreal Biodome (Canada). Int J Syst Evol Microbiol 54:269–273. https://doi.org/10.1099/ijs.0.02793-0

    Article  CAS  PubMed  Google Scholar 

  • Lee JA, Francis CA (2017) Spatiotemporal characterization of San Francisco Bay denitrifying communities: a comparison of nirK and nirS diversity and abundance. Microb Ecol 73:271–284

    CAS  PubMed  Google Scholar 

  • Liu JY, Peng MJ, Li YG (2012) Phylogenetic diversity of nitrogen-fixing bacteria and the nifH gene from mangrove rhizosphere soil. Can J Microbiol 58:531–539. https://doi.org/10.1139/w2012-016Microbiol.54:1185-119010.1099/ijs.0.028170

    Article  CAS  PubMed  Google Scholar 

  • Li R, Sijie Wu, Chai M, Xie S (2020) Denitrifier communities differ in mangrove wetlands across China. Marine Pollut Bull. https://doi.org/10.1016/j.marpolbul.2020.111160

    Article  Google Scholar 

  • Lovell CR, Davis DA (2012) Specificity of salt marsh diazotrophs for vegetation zones and plant hosts: results from a North American marsh. Front Microbiol 3:84

    PubMed  PubMed Central  Google Scholar 

  • Muckian L, Grant R, Doyle E, Clipson N (2007) Bacterial community structure in soils contaminated by polycyclic aromatic hydrocarbons. Chemosphere 68:1535–1541

    CAS  PubMed  Google Scholar 

  • Pereira e Silva MC, Schloter-Hai B, Schloter M, van Elsas JD, Salles JF (2013) Temporal dynamics of abundance and composition of nitrogen-fixing communities across agricultural soils. PLoS ONE 8(9):e74500. https://doi.org/10.1371/journal.pone.0074500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poly F, Monrozier LJ, Bally R (2001) Improvement in the RFLP procedure for studying the diversity of nifH genes in communities of nitrogen fixers in soil. Res Microbiol 152:95–103

    CAS  PubMed  Google Scholar 

  • Purvaja R, Ramesh R, Ray AK, Rixen T (2008) Nitrogen cycling: a review of the processes, transformations and fluxes in coastal ecosystems. Curr Sci 94:1419–1438

    CAS  Google Scholar 

  • Qaisrani MM, Zaheer A, Mirza MS, Naqqash T, Qaisrani TB, Hanif MK, Rasool G, Malik KA, Ullah S, Jamal MS, Mirza Z, Karim S, Rasool M (2019) A comparative study of bacterial diversity based on culturable and culture-independent techniques in the rhizosphere of maize (Zea mays L.). Saudi J Biol Sci 26(7):1344–1351. https://doi.org/10.1016/j.sjbs.2019.03.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raju K, Sekar J, Vaiyapuri RP (2016) Salinicola rhizosphaerae sp nov, isolated from the rhizosphere of the mangrove Avicennia marina L. Int J Syst Evol Microbiol 66(2):1074–1079. https://doi.org/10.1099/ijsem.0.000837

    Article  CAS  PubMed  Google Scholar 

  • Rameshkumar N, Lang E, Nair S (2010) Mangrovibacter plantisponsor gen. nov., sp. nov., a nitrogen-fixing bacterium isolated from a mangrove-associated wild rice (Porteresia coarctata Tateoka). Int J Syst Evol Microbiol 60:179–186

    CAS  PubMed  Google Scholar 

  • Rameshkumar N, Krishnan R, Lang E, Matsumura Y, Sawabe T (2014) Zunongwangia mangrovi sp. nov., isolated from mangrove (Avicennia marina) rhizosphere, and emended description of the genus Zunongwangia. Int J Syst Evol Microbiol 64:545–550

    CAS  PubMed  Google Scholar 

  • Rastogi G, Tech JJ, Coaker GL, Leveau JHJ (2010) A PCR-based toolbox for the culture-independent quantification of total bacterial abundances in plant environments. J Microbiol Methods 83:127–132

    CAS  PubMed  Google Scholar 

  • Ren M, Zhang Z, Wang X, Zhou Z, Chen D, Zeng H, Zhao S, Chen L, Hu Y, Zhang C, Liang Y, She Q, Zhang Y, Peng N (2018) Diversity and contributions to nitrogen cycling and carbon fixation of soil salinity shaped microbial communities in Tarim basin. Front Microbiol 9:431. https://doi.org/10.3389/fmicb.2018.00431

    Article  PubMed  PubMed Central  Google Scholar 

  • Riemann L, Farnelid H, Steward GF (2010) Nitrogenase genes in non-cyanobacterial plankton: prevalence, diversity and regulation in marine waters. Aquat Microb Ecol 61:235–247

  • Shivaji S, Chaturvedi P, Suresh K, Reddy GS, Dutt CB, Wainwright M, Narlikar JV, Bhargava PM (2006) Bacillus aerius sp. nov., Bacillus aerophilus sp. nov., Bacillus stratosphericus sp. nov. and Bacillus altitudinis sp. nov., isolated from cryogenic tubes used for collecting air samples from high altitudes. Int J Syst Evol Microbiol 56:1465–1473

    CAS  PubMed  Google Scholar 

  • Silveira CB, Vieira RP, Cardoso AM, Paranhos R, Albano RM, Martins OB (2011) Influence of salinity on Bacterioplankton communities from the Brazilian rain forest to the coastal atlantic ocean. PLoS ONE 6:1–9

    Google Scholar 

  • Sousa OV, Macrae A, Menezes FGR, Gomes NCM, Vieira RHSF, Mendonca-Hagler LCS (2006) The impact of shrimp farming effluent on bacterial communities in mangrove waters, Ceará, Brazil. Mar Pollut Bull 52:1725–1734

    CAS  PubMed  Google Scholar 

  • Tamura D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takaya N, Catalan-Sakairi MA, Sakaguchi Y, Kato I, Zhou Z, Shoun H (2003) Aerobic denitrifying bacteria that produce low levels of nitrous oxide. Appl Environ Microbiol 69(6):3152–3157

    CAS  PubMed  PubMed Central  Google Scholar 

  • The Mangrove Decade and Beyond: Activities, Lessons and Challenges in Mangrove Conservation and Management, MSSRF, Chennai, 2002

  • Vartoukian SR, Palmer RM, Wade WG (2010) Strategies for culture of unculturable bacteria. FEMS Microbiol Lett 309:1–7

  • Vazquez P, Holguin G, Puente M, Lopez-Cortes A, Bashan Y (2000) Phosphate-solubilizing microorganisms associated with the rhizosphere of mangroves in a semiarid coastal lagoon. Biol Fertil Soils 30:460–468. https://doi.org/10.1007/s003740050024

    Article  CAS  Google Scholar 

  • Viswanath G, Jegan S, Baskaran V, Kathiravan R, Prabavathy VR (2015) Diversity and N-acyl-homoserine lactone production by Gammaproteobacteria associated with Avicennia marina rhizosphere of South Indian mangroves. Syst Appl Microbiol 38:340–345

    CAS  PubMed  Google Scholar 

  • Woodward B, Christine SF, Carol LC, Heather MH (2009) Nitrate removal, denitrification and nitrous oxide production in the riparian zone of an ephemeral stream. Soil Biol Biochem 41(4):671–680

    CAS  Google Scholar 

  • Wu P, Xiong X, Xu Z, Lu C, Cheng H, Lyu X et al (2016) Bacterial communities in the rhizospheres of three mangrove tree species from Beilun Estuary. China PLOS ONE 11:e0164082. https://doi.org/10.1371/journal.pone.0164082

    Article  CAS  PubMed  Google Scholar 

  • Xie H, Hong Y, Liu H, Jiao L, Wu J et al (2020) Spatio-temporal shifts in community structure and activity of nirS-type denitrifiers in the sediment cores of Pearl River Estuary. PLoS ONE 15(4):e0231271

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida M, Ishii S, Fujii D, Otsuka S, Senoo K (2012) Identification of active denitrifiers in rice paddy soil by DNA- and RNA-based analyses. Microbes Environ 27:456–461

    PubMed  PubMed Central  Google Scholar 

  • Yousuf B, Kumar R, Mishra A, Jha B (2014) Differential distribution and abundance of diazotrophic bacterial communities across different soil niches using a gene-targeted clone library approach. FEMS Microbiol Lett 360:117–125. https://doi.org/10.1111/1574-6968.12593

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Peng J, Chen Q, Yang X, Hong Y, Su J (2013) Abundance and composition of denitrifiers in response to Spartina alterniflora invasion in estuarine sediment. Can J Microbiol 59(12):825–836. https://doi.org/10.1139/cjm-2013-0516

    Article  CAS  PubMed  Google Scholar 

  • Zhang HS, Guo B, Sun J, Zhang M, Cheng Q, Li Q, Hong XH (2015) Mangrovibacter yixingensis sp. nov., isolated from farmland soil Int. J Syst Evol Microbiol 65:2447–2452

    CAS  Google Scholar 

  • Zhang Y, Dong J, Yang Z, Zhang S, Wang Y (2008) Phylogenetic diversity of nitrogen-fixing bacteria in mangrove sediments assessed by PCR–denaturing gradient gel electrophoresis. Arch Microbiol 190:19–28

    CAS  PubMed  Google Scholar 

  • Zhang Y, Yang Q, Ling J, Van Nostrand JD, Shi Z, Zhou J, Dong J (2017) Diversity and structure of diazotrophic communities in mangrove rhizosphere, revealed by high-throughput sequencing. Front Microbiol 8:2032. https://doi.org/10.3389/fmicb.2017.02032

    Article  PubMed  PubMed Central  Google Scholar 

  • Zheng YL, Hou LJ, Liu M, Gao J, Yin GY, Li XF et al (2013) Diversity, abundance, and distribution of nirS-Harboring denitrifiers in intertidal sediments of the Yangtze estuary. Microb Ecol 2015(70):30–40

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Department of Biotechnology, Govt of India.

Author information

Authors and Affiliations

Authors

Contributions

BV: experiment designing, data analysis, and writing. VRP: supervision and critical correction of the manuscript.

Corresponding author

Correspondence to V. R. Prabavathy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

The study is not related to animals or humans.

Additional information

Communicated by Erko Stackebrandt.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baskaran, V., Prabavathy, V.R. Diverse key nitrogen cycling genes nifH, nirS and nosZ associated with Pichavaram mangrove rhizospheres as revealed by culture-dependent and culture-independent analyses. Arch Microbiol 204, 109 (2022). https://doi.org/10.1007/s00203-021-02661-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00203-021-02661-4

Keywords

Navigation