Skip to main content
Log in

New advances in exopolysaccharides production of Streptococcus thermophilus

  • Mini-Review
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Streptococcus thermophilus is the most important thermophilic dairy starter, and is widely used in the dairy industry. Streptococcus thermophilus exopolysaccharides received wide attention over recent decades, because they can improve the properties of the dairy product and confer beneficial health effects. The understanding of the regulatory and biosynthetic mechanisms of EPS will improve the EPS biosynthesis, increase the productivity of EPSs, and develop EPSs with desirable properties. The structure of EPSs is the focus of this study. Revealing the structure–function relationship can lead to increase the knowledge base and from there to increased research of EPS. The EPS yield is a key limiting factor in the research and utilization of EPS. In the present review, biosynthetic pathways and genetics of S. thermophilus EPSs were described and reviewed. At the same time, functional properties and applications of EPS, and strategies for enhancement of EPS production are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Almirón-Roig E, Mulholland F, Gasson MJ, Griffin AM (2000) The complete cps gene cluster from Streptococcus thermophilus NCFB 2393 involved in the biosynthesis of a new exopolysaccharide. Microbiology 146:2793–2802

    Article  PubMed  Google Scholar 

  • Amatayakul T, Sherkat F, Shah NP (2006) Physical characteristics of set yoghurt made with altered casein to whey protein ratios and EPS-producing starter cultures at 9 and 14% total solids. Food Hydrocolloid 20:314–324

    Article  CAS  Google Scholar 

  • Bai Y, Sun E, Shi YD, Jiang YY, Chen Y, Liu SL et al (2016) Complete genome sequence of Streptococcus thermophilus MN-BM-A01, a strain with high exopolysaccharides production. J Biotechnol 224:45–46

    Article  CAS  PubMed  Google Scholar 

  • Bolotin A, Quinquis B, Renault P, Sorokin A, Ehrlich SD, Kulakauskas S et al (2004) Complete sequence and comparative genome analysis of the dairy bacterium Streptococcus thermophilus. Nat Biotechnol 22:1554–1558

    Article  CAS  PubMed  Google Scholar 

  • Bourgoin F, Pluvinet A, Gintz B, Decaris B, Guédon G (1999) Are horizontal transfers involved in the evolution of the Streptococcus thermophilus exopolysaccharide synthesis loci? Gene 233(1):151–161

    Article  CAS  PubMed  Google Scholar 

  • Broadbent JR, Mcmahon DJ, Welker DL, Oberg CJ, Moineau S (2003) Biochemistry genetics and applications of exopolysaccharide production in Streptococcus thermophilus: a review. J Dairy Sci 86:407–423

    Article  CAS  PubMed  Google Scholar 

  • Bubb WA, Urashima T, Fujiwara R, Shinnai T, Ariga H (1997) Structural characterisation of the exocellular polysaccharide produced by Streptococcus thermophilus OR 901. Carbohyd Res 301:41–50

    Article  CAS  Google Scholar 

  • Cui YH, Xu TT, Qu XJ, Hu T, Jiang X, Zhao CY (2016) New insights into various production characteristics of Streptococcus thermophilus strains. Int J Mol Sci 17(10):1701

    Article  PubMed Central  Google Scholar 

  • Cuthbertson L, Mainprize IL, Naismith JH, Whitfield C (2009) Pivotal roles of the outer membrane polysaccharide export and polysaccharide copolymerase protein families in export of extracellular polysaccharides in Gram-negative bacteria. Microbiol Mol Biol Rev 73:155–177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Vuyst L, Vanderveken F, Van de Ven S, Degeest B (1998) Production by and isolation and different concentrations of exopolysaccharides from Streptococcus thermophilus grown in a milk medium and evidence for their growth-associated biosynthesis. J Appl Microbiol 84:1059–1068

    Article  PubMed  Google Scholar 

  • de Vuyst L, Zamfir M, Mozzi F, Adriany T, Marshall V, Degeest B et al (2003) Exopolysaccharide-producing Streptococcus thermophilus strains as functional starter cultures in the production of fermented milks. Int Dairy J 13:707–717

    Article  Google Scholar 

  • de Vin F, Rådström P, Herman L, de Vuyst L (2005) Molecular and biochemical analysis of the galactose phenotype of dairy Streptococcus thermophilus strains reveals four different fermentation profiles. J Appl Microbiol 71(7):3659–3667

    Article  Google Scholar 

  • de Vuyst L, Weckx S, Ravyts F, Herman L, Leroy F (2011) New insights into the exopolysaccharide production of Streptococcus thermophilus. Int Dairy J 21:586–591

    Article  Google Scholar 

  • Degeest B, De Vuyst L (2000) Correlation of activities of the enzymes α-phosphoglucomutase UDP-galactose 4-epimerase and UDP-glucose pyrophosphorylase with exopolysaccharide biosynthesis by Streptococcus thermophilus LY03. Appl Environ Microbiol 66(8):3519–3527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Degeest B, van de Ven S, de Vuyst L (1999) Process characteristics of exopolysaccharide production by Streptococcus thermophilus. Macromol Symp 140:43–52

    Article  CAS  Google Scholar 

  • Degeest B, Vaningelgem F, Vuyst LD (2001) Microbial physiology fermentation kinetics and process engineering of heteropolysaccharide production by lactic acid bacteria. Int Dairy J 11:747–757

    Article  CAS  Google Scholar 

  • Delorme C, Bartholini C, Luraschi M, Pons N, Loux V, Almeida M et al (2011) Complete genome sequence of the pigmented Streptococcus thermophilus strain JIM8232. J Bacteriol 193(19):5581–5582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doco T, Wieruszeski JM, Fournet B, Carcano D, Ramos P, Loones A (1990) Structure of an exocellular polysaccharide produced by Streptococcus thermophilus. Carbohyd Res 198:313–3 21

    Google Scholar 

  • Erkus O, Okuklu B, Yenidunya AF, Harsa S (2014) High genetic and phenotypic variability of Streptococcus thermophilus strains isolated from artisanal Yuruk yoghurts. LWT-Food Sci Technol 58:348–354

    Article  CAS  Google Scholar 

  • Escalante A, Wacher-Rodarte C, Garcia-Garibay M, Farres A (1998) Enzymes involved in carbohydrate metabolism and their role on exopolysaccharide production in Streptococcus thermophilus. J Appl Microbiol 84:108–114

    Article  CAS  PubMed  Google Scholar 

  • Escalante A, Villegas J, Wacher C, García-Garibay M, Farrés A (2002) Activity of the enzymes involved in the synthesis of exopolysaccharide precursors in an overproducing mutant ropy strain of Streptococcus thermophilus. FEMS Microbiol Lett 209(2):289–293

    Article  CAS  PubMed  Google Scholar 

  • Faber EJ, Zoon P, Kamerling JP, Vliegenthart JF (1998) The exopolysaccharides produced by Streptococcus thermophilus Rs and Sts have the same repeating unit but differ in viscosity of their milk cultures. Carbohydr Res 310(4):269–276

    Article  CAS  PubMed  Google Scholar 

  • Faber EJ, van den Haak MJ, Kamerling JP, Vliegenthart JF (2001) Structure of the exopolysaccharide produced by Streptococcus thermophilus S3. Carbohydr Re s331(2):173–182

    Article  Google Scholar 

  • Faber EJ, van Haaster DJ, Kamerling JP, Vliegenthart JFG (2002) Characterization of the exopolysaccharide produced by Streptococcus thermophilus 8 S containing an open chain nononic acid. Eur J Biochem 269:5590–5598

    Article  CAS  PubMed  Google Scholar 

  • Fernandez MA, Picard-Deland É, Le Barz M, Daniel N, Marette A (2017) Chap. 13Yogurt and health. In: Frías J, Martínez-Villaluenga C, Peñas E (eds) Fermented foods in health and disease prevention. Academic, Cambridge, pp 305–338

    Chapter  Google Scholar 

  • Freitas M (2017) Chap. 24 The benefits of yogurt, cultures, and fermentation. In: Floch MH, Ringel Y, Walker WA (eds) The microbiota in gastrointestinal pathophysiology. Implications for human health, prebiotics, probiotics, and dysbiosis. Academic, Cambridge, pp 209–223

    Chapter  Google Scholar 

  • Freitas F, Alves VD, Reis MA (2011) Advances in bacterial exopolysaccharides: from production to biotechnological applications. Trends Biotechnol 29(8):388–398

    Article  CAS  PubMed  Google Scholar 

  • Gentès MC, St-Gelais D, Turgeon S (2011) Gel formation and rheological properties of fermented milk with in situ exopolysaccharide production by lactic acid bacteria. Dairy Sci Technol 91:645–661

    Article  Google Scholar 

  • Gentès MC, St-Gelais D, Turgeon S (2013) Exopolysaccharide-milk protein interactions in a dairy model system simulating yoghurt conditions. Dairy Sci Technol 93:255–271

    Article  Google Scholar 

  • Germond JE, Delley M, D’Amico N, Vincent SJF (2001) Heterologous expression and characterization of the exopolysaccharide from Streptococcus thermophilus Sfi39. Eur J Biochem 268:5149–5156

    Article  CAS  PubMed  Google Scholar 

  • Giraffa G, Paris A, Valcavi L, Gatti M, Neviani E (2001) Genotypic and phenotypic heterogeneity of Streptococcus thermophilus strains isolated from dairy products. J Appl Microbiol 91:937–943

    Article  CAS  PubMed  Google Scholar 

  • Guarner F, Perdigon G, Corthier G, Salminen S, Koletzko B, Morelli L (2005) Should yoghurt cultures be considered probiotic? Br J Nutr 93(6):783–786

    Article  CAS  PubMed  Google Scholar 

  • Gunnewijk MG, Poolman B (2000) Phosphorylation state of HPr determines the level of expression and the extent of phosphorylation of the lactose transport protein of Streptococcus thermophilus. J Biol Chem 275:34073–34079

    Article  CAS  PubMed  Google Scholar 

  • Harutoshi T (2013) Exopolysaccharides of lactic acid bacteria for food and colon health applications. In: Kongo M (eds) Lactic acid bacteria—R D for food health and livestock purposes. InTech, Rijeka, pp 515–538

    Google Scholar 

  • Hols P, Hancy F, Fontaine L, Grossiord B, Prozzi D, Leblond-Bourget N et al (2005) New insights in the molecular biology and physiology of Streptococcus thermophilus revealed by comparative genomics. FEMS Microbiol Rev 29:435–463

    CAS  PubMed  Google Scholar 

  • Izawa N, Hanamizu T, Iizuka R, Sone T, Mizukoshi H, Kimura K et al (2009) Streptococcus thermophilus produces exopolysaccharides including hyaluronic acid. J Biosci Bioeng 107(2):119–123

    Article  CAS  PubMed  Google Scholar 

  • Jolly L, Stingele F (2001) Molecular organization and functionality of exopolysaccharide gene clusters in lactic acid bacteria. Int Dairy J 11:733–745

    Article  CAS  Google Scholar 

  • Kang X, Ling N, Sun G, Zhou Q, Zhang L, Sheng Q (2012) Complete genome sequence of Streptococcus thermophilus strain MN-ZLW-002. J Bacteriol 194(16):4428–4429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Labrie SJ, Tremblay DM, Plante PL, Wasserscheid J, Dewar K, Corbeil J et al (2015) Complete genome sequence of Streptococcus thermophilus SMQ-301 a model strain for phage-post interactions. Genome Announc 3(3):e00480–15

    Article  PubMed  PubMed Central  Google Scholar 

  • Laws A, Gu YC, Marshall V (2001) Biosynthesis characterisation and design of bacterial exopolysaccharides from lactic acid bacteria. Biotechnol Adv 19:597–625

    Article  CAS  PubMed  Google Scholar 

  • Lemoine J, Chirat F, Wieruszeski JM, Strecker G, Favre N, Neeser JR (1997) Structural characterization of the exocellular polysaccharides produced by Streptococcus thermophilus SFi39 and SFi12. Appl Environ Microbiol 63:3512–3518

    CAS  PubMed  PubMed Central  Google Scholar 

  • Letort C, Juillard V (2001) Development of a minimal chemically defined medium for the exponential growth of Streptococcus thermophilus. J Appl Microbiol 91:1023–1029

    Article  CAS  PubMed  Google Scholar 

  • Levander F, Rådström P (2001) Requirement for phosphoglucomutase in exopolysaccharide biosynthesis in glucose- and lactose-utilizing Streptococcus thermophilus. Appl Environ Microbiol 67:2734–2738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levander F, Svensson M, Rådström P (2002) Enhanced exopolysaccharide production by metabolic engineering of Streptococcus thermophilus. Appl Environ Microbiol 68:784–790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li S, Shah NP (2014) Antioxidant and antibacterial activities of sulphated polysaccharides from Pleurotus eryngii and Streptococcus thermophilus ASCC 1275. Food Chem 165:262–270

    Article  CAS  PubMed  Google Scholar 

  • Li D, Li J, Zhao F, Wang GH, Qin QQ, Hao YL (2016) The influence of fermentation condition on production and molecular mass of EPS produced by Streptococcus thermophilus 05–34 in milk-based medium. Food Chem 197:367–372

    Article  CAS  PubMed  Google Scholar 

  • Low D, Ahlgren JA, Horne D, McMahon DJ, Oberg CJ, Broadbent JR (1998) Role of Streptococcus thermophilus MR-1C capsular exopolysaccharide on cheese moisture retention. Appl Environ Microbiol 64:2147–2151

    CAS  PubMed  PubMed Central  Google Scholar 

  • Makarova K, Slesarev A, Wolf Y, Sorokin A, Mirkin B, Koonin E et al (2006) Comparative genomics of the lactic acid bacteria. Proc Natl Acad Sci USA 103(42):15611–15616

    Article  PubMed  PubMed Central  Google Scholar 

  • Marcial G, Messing J, Menchicchi B, Goycoolea FM, Faller G, de Valdez Graciela F et al (2013) Effects of polysaccharide isolated from Streptococcus thermophilus CRL1190 on human gastric epithelial cells. Int J Biol Macromol 62:217–224

    Article  CAS  PubMed  Google Scholar 

  • Marette A, Picard-Deland E (2014) Yogurt consumption and impact on health: focus on children and cardiometabolic risk. Am J Clin Nutr 99(5 Suppl):1243S–1247S

    Article  CAS  PubMed  Google Scholar 

  • Marshall VM, Dunn H, Elvin M, McLay N, Gu Y, Laws AP (2001a) Structural characterisation of the exopolysaccharide produced by Streptococcus thermophilus EU20. Carbohyd Res 331(4):413–422

    Article  CAS  Google Scholar 

  • Marshall VM, Laws AP, Gu Y, Levander F, Rådström P, de Vuyst L et al (2001b) Exopolysaccharide-producing strains of thermophilic lactic acid bacteria cluster into groups according to their EPS structure .Lett Appl Microbiol 32 :433–437

    Article  CAS  PubMed  Google Scholar 

  • Mater DD, Bretigny L, Firmesse O, Flores MJ, Mogenet A, Bresson JL et al (2005) Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus survive gastrointestinal transit of healthy volunteers consuming yogurt. FEMS Microbiol Lett 250(2):185–187

    Article  CAS  PubMed  Google Scholar 

  • Mende S, Mentner C, Thomas S, Rohm H, Jaros D (2012) Exopolysaccharide production by three different strains of Streptococcus thermophilus and its effect on physical properties of acidified milk. Eng. Life Sci 12:466–474

    Article  CAS  Google Scholar 

  • Mende S, Rohm H, Jaros D (2016) Influence of exopolysaccharides on the structure texture stability and sensory properties of yoghurt and related products. Int Dairy J 52:57–71

    Article  CAS  Google Scholar 

  • Morandi S, Brasca M (2012) Safety aspects genetic diversity and technological characterisation of wild-type Streptococcus thermophilus strains isolated from north Italian traditional cheeses. Food Control 23:203–209

    Article  CAS  Google Scholar 

  • Mozzi F, Vaningelgem F, Hebert EM, Meulen RVD, Moreno MRF, Valdez GFD et al (2006) Diversity of heteropolysaccharide-producing lactic acid bacterium strains and their biopolymers. Appl Environ Microb 72:4431–4435

    Article  CAS  Google Scholar 

  • Navarini L, Abatangelo A, Claudia B, Conti E, Bosco M, Picotti F (2001) Isolation and characterization of the exopolysaccharide produced by Streptococcus thermophilusSfi20. Int J Biol Macromol 28:219–226

    Article  CAS  PubMed  Google Scholar 

  • Papagianni M (2012) Metabolic engineering of lactic acid bacteria for the production of industrially important compounds. Comput Struct Biotechnol J 3:e201210003

    Article  PubMed  PubMed Central  Google Scholar 

  • Pébay M, Colmin C, Guédon G, Simonet JM, Decaris B (1993) Chromosomal genetic instability in S thermophilus. Lait Dairy Sci Technol 73:181–190

    Article  Google Scholar 

  • Pluvinet A, Charron-Bourgoin F, Morel C, Decaris B (2004) Polymorphism of eps loci in Streptococcus thermophilus: sequence replacement by putative horizontal transfer in S thermophilus IP6757. Int Dairy J 14:627–634

    Article  CAS  Google Scholar 

  • Poolman B (1993) Energy transduction in lactic acid bacteria. FEMS Microbiol Rev 12:125–147

    Article  CAS  PubMed  Google Scholar 

  • Purwandari U, Shah NP, Vasiljevic T (2007) Effects of exopolysaccharide producing strains of Streptococcus thermophilus on technological and rheological properties of set-type yoghurt. Int Dairy J 17:1344–1352

    Article  CAS  Google Scholar 

  • Qin QQ, Xia BS, Xiong Y, Zhang SX, Luo YB, Hao YL (2011) Structural characterization of the exopolysaccharide produced by Streptococcus thermophilus 05–34 and its in situ application in yogurt. J Food Sci 76(9):C1226–C1230

    Article  CAS  PubMed  Google Scholar 

  • Ren W, Xia Y, Wang G, Zhang H, Zhu S, Ai L (2016) Bioactive exopolysaccharides from a S thermophilus strain: screening purification and characterization. Int J Biol Macromol 86:402–407

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez C, Medici M, Mozzi F, de Valdez Graciela F (2010) Therapeutic effect of Streptococcus thermophilus CRL 1190-fermented milk on chronic gastritis. World J Gastroenterol 16(13):1622–1630

    Article  PubMed  PubMed Central  Google Scholar 

  • Ruas-Madiedo P, Los Reyes-Gavilán CGD (2005) Invited review: methods for the screening isolation and characterization of exopolysaccharides produced by lactic acid bacteria. J Dairy Sci 88(3):843–856

    Article  CAS  PubMed  Google Scholar 

  • Ruffing A, Chen RR (2006) Metabolic engineering of microbes for oligosaccharide and polysaccharide synthesis. Microb Cell Factor 5:25

    Article  Google Scholar 

  • Säwén E, Zhang X, Yang Z, Widmalm G (2010) Structural analysis of the exopolysaccharide produced by Streptococcus thermophilus ST1 solely by NMR spectroscopy. J Biomol NMR 47(2):125–134

    Article  PubMed  Google Scholar 

  • Shene C, Canquil N, Bravo S, Rubilar M (2008) Production of the exopolysaccharides by Streptococcus thermophilus: effect of growth conditions on fermentation kinetics and intrinsic viscosity. Int J Food Microbiol 124(3):279–284

    Article  CAS  PubMed  Google Scholar 

  • Stingele F, Neeser JR, Mollet B (1996) Identification and characterization of the eps (exopolysaccharide) gene cluster from Streptococcus thermophilus Sfi6. J Bacteriol 178:1680–1690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stingele F, Germond JE, Lamothe G (1999a) Lactic acid bacterial genes involved in exopolysaccharide biosynthesis and encoded glycosyl transferases. PCT International Application WO 9954475

  • Stingele F, Vincent SJF, Faber EJ, Newell JW, Kamerling JP, Neeser JR (1999b) Introduction of the exopolysaccharide gene cluster from Streptococcus thermophilus Sfi6 into Lactococcus lactis MG1363: production and characterization of an altered polysaccharide. Mol Microbiol 32(6):1287–1295

    Article  CAS  PubMed  Google Scholar 

  • Sun Z, Chen X, Wang J, Hao W, Shao Y, Wu L et al (2011) Complete genome sequence of Streptococcus thermophilus strain ND03. J Bacteriol 193(3):793–794

    Article  CAS  PubMed  Google Scholar 

  • Svensson M, Waak E, Svensson U, Rådström P (2005) Metabolically improved exopolysaccharide production by Streptococcus thermophilus and its influence on the rheological properties of fermented milk. Appl Environ Microb 71(10):6398–6400

    Article  CAS  Google Scholar 

  • Thibault H, Aubert-Jacquin C, Goulet O (2004) Effects of long-term consumption of a fermented infant formula (with Bifidobacterium breve c50 and Streptococcus thermophilus 065) on acute diarrhea in healthy infants. J Pediatr Gastroenterol Nutr 39(2):147–152

    Article  CAS  PubMed  Google Scholar 

  • Treu L, Vendramin V, Bovo B, Campanaro S, Corich V, Giacomini A (2014) Genome sequences of four Italian Streptococcus thermophilus strains of dairy origin. Genome Announc 2(2):e00126–14

    Article  PubMed  PubMed Central  Google Scholar 

  • van Kranenburg R, Marugg JD, Swam IIV, Willem NJ, Devos WM (1997) Molecular characterization of the plasmid encoded eps gene cluster essential for exopolysaccharide biosynthesis in Lactococcus lactis. Mol Microbiol 24:387–397

    Article  PubMed  Google Scholar 

  • van Kranenburg R, van Swam II, Marugg JD, Kleerebezem M, de Vos WM (1999a) Exopolysaccharide biosynthesis in Lactococcus lactis NIZO B40: Functional analysis of the glycosyltransferase genes involved in synthesis of the polysaccharide backbone. J Bacteriol 181:338–340

    PubMed  PubMed Central  Google Scholar 

  • van Kranenburg R, Vos HR, van Swam II, Kleerebezem M, de Vos WM (1999b) Functional analysis of glycosyltransferase genes from Lactococcus lactis and other gram-positive cocci: complementation expression and diversity. J Bacteriol 181(20):6347–6353

    PubMed  PubMed Central  Google Scholar 

  • van den Bogaard PT, Kleerebezem M, Kuipers OP, de Vos WM (2000) Control of lactose transport beta-galactosidase activity and glycolysis by CcpA in Streptococcus thermophilus: evidence for carbon catabolite repression by a nonphosphoenolpyruvate- dependent phosphotransferase system sugar. J Bacteriol 182:5982–5989

    Article  PubMed  PubMed Central  Google Scholar 

  • van den Bogaard PT, Hols P, Kuipers OP, Kleerebezem M, de Vos WM (2004) Sugar utilisation and conservation of the gal-lac gene cluster in Streptococcus thermophilus. Syst Appl Microbiol 27:10–17

    Article  PubMed  Google Scholar 

  • Vaningelgem F, Zamfir M, Adriany T, de Vuyst L (2004a) Fermentation conditions affecting the bacterial growth and exopolysaccharide production by Streptococcus thermophilus ST 111 in milk-based medium. J Appl Microbiol 97(6):1257–1273

    Article  CAS  PubMed  Google Scholar 

  • Vaningelgem F, Zamfir M, Mozzi F, Adriany T, Vancanneyt M (2004b) Biodiversity of exopolysaccharides produced by Streptococcus thermophilus strains is reflected in their production and their molecular and functional characteristics. Appl Environ Microb 70(2):900–912

    Article  CAS  Google Scholar 

  • Vaughan EE, Van Den Bogaard PT, Catzeddu P, Kuipers OP, de Vos WM (2001) Actiation of silent gal genes in the lac-gal regulon of Streptococcus thermophilus. J Bacteriol 183:1184–1194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whitford EJ, Cummins AG, Butler RN, Prisciandaro LD, Fauser JK, Yazbeck R et al (2009) Effects of Streptococcus thermophilus TH-4 on intestinal mucositis induced by the chemotherapeutic agent, 5-Fluorouracil (5-FU). Cancer Biol Ther 8(6):505–511

    Article  CAS  Google Scholar 

  • Wu Q, Tun HM, Leung FC, Shah NP (2014) Genomic insights into high exopolysaccharide-producing dairy starter bacterium Streptococcus thermophilus ASCC 1275. Sci Rep 4:4974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang T, Zhang C, Li S, Zhang Y, Yang Z (2011) Growth and exopolysaccharide production by Streptococcus thermophilus ST1 in skim milk. Braz J Microbiol 42(4):1470–1478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Cao Y, Wang J, Guo X, Zheng Y, Zhao W et al (2016) Physicochemical characteristics and bioactivities of the exopolysaccharide and its sulphated polymer from Streptococcus thermophilus GST-6. Carbohydr Polym 146:368–375

    Article  CAS  PubMed  Google Scholar 

  • Zisu B, Shah NP (2003) Effects of pH temperature supplementation with whey protein concentrate and adjunct cultures on the production of exopolysaccharides by Streptococcus thermophilus 1275. J Dairy Sci 86:3405–3415

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Nature Science Foundation of China (Grant Nos. 31471712; 31371827).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanhua Cui.

Additional information

Communicated by Erko Stackebrandt.

X. Jiang and M. Hao contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 69 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, Y., Jiang, X., Hao, M. et al. New advances in exopolysaccharides production of Streptococcus thermophilus . Arch Microbiol 199, 799–809 (2017). https://doi.org/10.1007/s00203-017-1366-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-017-1366-1

Keywords

Navigation