Skip to main content
Log in

Structural analysis of the exopolysaccharide produced by Streptococcus thermophilus ST1 solely by NMR spectroscopy

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

The use of lactic acid bacteria in fermentation of milk results in favorable physical and rheological properties due to in situ exopolysaccharide (EPS) production. The EPS from S. thermophilus ST1 produces highly viscous aqueous solutions and its structure has been investigated by NMR spectroscopy. Notably, all aspects of the elucidation of its primary structure including component analysis and absolute configuration of the constituent monosaccharides were carried out by NMR spectroscopy. An array of techniques was utilized including, inter alia, PANSY and NOESY-HSQC TILT experiments. The EPS is composed of hexasaccharide repeating units with the following structure: → 3)[α-d-Glcp-(1 → 4)]-β-d-Galp-(1 → 4)-β-d-Glcp-(1 → 4)[β-d-Galf-(1 → 6)]-β-d-Glcp-(1 → 6)-β-d-Glcp-(1 →, in which the residues in square brackets are terminal groups substituting backbone sugar residues that consequently are branch-points in the repeating unit of the polymer. Thus, the EPS consists of a backbone of four sugar residues with two terminal sugar residues making up two side-chains of the repeating unit. The molecular mass of the polymer was determined using translational diffusion experiments which resulted in Mw = 62 kDa, corresponding to 64 repeating units in the EPS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

EPS:

Exopolysaccharide

TILT:

Time-domain increments linked together

References

  • Baumann H, Tzianabos AO, Brisson J-R, Kasper DL, Jennings HJ (1992) Structural elucidation of two capsular polysaccharides from one strain of Bacteroides fragilis using high-resolution NMR spectroscopy. Biochemistry 31:4081–4089

    Article  Google Scholar 

  • Beier RC, Mundy BP, Strobel GA (1980) Assignment of anomeric configuration and identification of carbohydrate residues by 13C nmr. 1. Galacto- and glucopyranosides and furanosides. Can J Chem 58:2800–2804

    Article  Google Scholar 

  • Broadbent JR, McMahon DJ, Welker DL, Oberg CJ, Moineau S (2003) Biochemistry, genetics, and applications of exopolysaccharide production in Streptococcus thermophilus: a review. J Dairy Sci 86:407–423

    Article  Google Scholar 

  • Bubb WA, Urashima T, Fujiwara R, Shinnai T, Ariga H (1997) Structural characterisation of the exocellular polysaccharide produced by Streptococcus thermophilus OR 901. Carbohydr Res 301:41–50

    Article  Google Scholar 

  • Bundle DR, Lemieux RU (1976) Determination of anomeric configuration by NMR. Methods Carbohydr Chem 7:79–86

    Google Scholar 

  • Damberg P, Jarvet J, Gräslund A (2001) Accurate measurement of translational diffusion coefficients: a practical method to account for nonlinear gradients. J Magn Reson 148:343–348

    Article  ADS  Google Scholar 

  • De Vuyst L, Zamfir M, Mozzi F, Adriany T, Marshall V, Degeest B, Vaningelgem F (2003) Exopolysaccharide-producing Streptococcus thermophilus strains as functional starter cultures in the production of fermented milks. Int Dairy J 13:707–717

    Article  Google Scholar 

  • Degeest B, Vaningelgem F, Laws AP, De Vuyst L (2001) UDP-N-acetylglucosamine 4-epimerase activity indicates the presence of N-acetylgalactosamine in exopolysaccharides of Streptococcus thermophilus strains. Appl Environ Microbiol 67:3976–3984

    Article  Google Scholar 

  • Delorme C (2008) Safety assessment of dairy microorganisms: Streptococcus thermophilus. Int J Food Microbiol 126:274–277

    Article  Google Scholar 

  • Doco T, Wieruszeski J-M, Fournet B, Carcano D, Ramos P, Loones A (1990) Structure of an exocellular polysaccharide produced by Streptococcus thermophilus. Carbohydr Res 198:313–321

    Article  Google Scholar 

  • Faber EJ, Zoon P, Kamerling JP, Vliegenthart JFG (1998) The exopolysaccharides produced by Streptococcus thermophilus Rs and Sts have the same repeating unit but differ in viscosity of their milk cultures. Carbohydr Res 310:269–276

    Article  Google Scholar 

  • Faber EJ, van den Haak MJ, Kamerling JP, Vliegenthart JFG (2001) Structure of the exopolysaccharide produced by Streptococcus thermophilus S3. Carbohydr Res 331:173–182

    Article  Google Scholar 

  • Faber EJ, van Kuik JA, Halkes KM, Kamerling JP, Vliegenthart JFG (2002a) A novel open-chain nononic acid linked by an ether bond to glucose as a polysaccharide constituent. Chem Eur J 8:4498–4505

    Article  Google Scholar 

  • Faber EJ, van Haaster DJ, Kamerling JP, Vliegenthart JFG (2002b) Characterization of the exopolysaccharide produced by Streptococcus thermophilus 8S containing an open chain nononic acid. Eur J Biochem 269:5590–5598

    Article  Google Scholar 

  • Folkenberg DM, Dejmek P, Skriver A, Guldager HS, Ipsen R (2006) Sensory and rheological screening of exopolysaccharide producing strains of bacterial yogurt cultures. Int Dairy J 16:111–118

    Article  Google Scholar 

  • Gorin PAJ, Mazurek M (1975) Further studies on the assignment of signals in 13C magnetic resonance spectra of aldoses and derived methyl glycosides. Can J Chem. 53:1212–1223

    Article  Google Scholar 

  • Jansson P-E, Kenne L, Widmalm G (1989) Computer-assisted structural analysis of polysaccharides with an extended version of CASPER using 1H- and 13C-n.m.r. data. Carbohydr Res 188:169–191

    Article  Google Scholar 

  • Kupče E, Freeman R (2005) Resolving ambiguities in two-dimensional NMR spectra: the ‘TILT’ experiment. J Magn Reson 172:329–332

    Article  ADS  Google Scholar 

  • Kupče E, Nishida T, Widmalm G, Freeman R (2005) Resolving overlap in two-dimensional NMR spectra: nuclear Overhauser effects in a polysaccharide. Magn Reson Chem 43:791–794

    Article  Google Scholar 

  • Kupče E, Freeman R, John BK (2006) Parallel acquisition of two-dimensional NMR spectra of several nuclear species. J Am Chem Soc 128:9606–9607

    Article  Google Scholar 

  • Landersjö C, Yang Z, Huttunen E, Widmalm G (2002) Structural studies of the exopolysaccharide produced by Lactobacillus rhamnosus strain GG (ATCC 53103). Biomacromolecules 3:880–884

    Article  Google Scholar 

  • Lemoine J, Chirat F, Wieruszeski J-M, Strecker G, Favre N, Neeser J-R (1997) Structural characterization of the exocellular polysaccharides produced by Streptococcus thermophilus SFi39 and SFi12. Appl Environ Microbiol 63:3512–3518

    Google Scholar 

  • Linnerborg M, Wollin R, Widmalm G (1997) Structural studies of the O-antigenic polysaccharide from Escherichia coli O167. Eur J Biochem 246:565–573

    Article  Google Scholar 

  • Marshall VM, Laws AP, Gu Y, Levander F, Rådström P, De Vuyst L, Degeest B, Vaningelgem F, Dunn H, Elvin M (2001a) Exopolysaccharide-producing strains of thermophilic lactic acid bacteria cluster into groups according to their EPS structure. Lett Appl Microbiol 32:433–437

    Article  Google Scholar 

  • Marshall VM, Dunn H, Elvin M, McLay N, Gu Y, Laws AP (2001b) Structural characterisation of the exopolysaccharide produced by Streptococcus thermophilus EU20. Carbohydr Res 331:413–422

    Article  Google Scholar 

  • Miller JA, Neuzil EF (1982) Modern experimental organic chemistry. D.C. Heath and Company, MA, pp 569–571

    Google Scholar 

  • Mills R (1973) Self-diffusion in normal and heavy water in the range 1°–45°. J Phys Chem 77:685–688

    Article  Google Scholar 

  • Navarini L, Abatangelo A, Bertocchi C, Conti E, Bosco M, Picotti F (2001) Isolation and characterization of the exopolysaccharide produced by Streptococcus thermophilus SFi20. Int J Biol Macromol 28:219–226

    Article  Google Scholar 

  • Nordmark E-L, Yang Z, Huttunen E, Widmalm G (2005) Structural studies of an exopolysaccharide produced by Streptococcus thermophilus THS. Biomacromolecules 6:105–108

    Article  Google Scholar 

  • Petersen BO, Vinogradov E, Kay W, Würtz P, Nyberg NT, Duus JØ, Sørensen OW (2006) H2BC: a new technique for NMR analysis of complex carbohydrates. Carbohydr Res 341:550–556

    Article  Google Scholar 

  • Purwandari U, Shah NP, Vasiljevic T (2007) Effects of exopolysaccharide-producing strains of Streptococcus thermophilus on technological and rheological properties of set-type yogurt. Int Dairy J 17:1344–1352

    Article  Google Scholar 

  • Ray TC, Smith ARW, Wait R, Hignett RC (1987) Structure of the sidechain of lipopolysaccharide from Erwinia amylovora T. Eur J Biochem 170:357–361

    Article  Google Scholar 

  • Ritchie RGS, Cyr N, Korsch B, Koch HJ, Perlin AS (1975) Carbon-13 chemical shifts of furanosides and cyclopentanols. Configurational and conformational influences. Can J Chem 53:1424–1433

    Article  Google Scholar 

  • Söderman P, Jansson P-E, Widmalm G (1998) Synthesis, NMR spectroscopy and conformational studies of the four anomeric methyl glycosides of the trisaccharide D-Glcp-(1→3)-[D-Glcp-(1→4)]-α-D-Glcp. J Chem Soc, Perkin Trans 2:639–648

    Google Scholar 

  • Stingele F, Neeser J-R, Mollet B (1996) Identification and characterization of the eps (Exopolysaccharide) gene cluster from Streptococcus thermophilus Sfi6. J Bacteriol 178:1680–1690

    Google Scholar 

  • Vaningelgem F, Van der Meulen R, Zamfir M, Adriany T, Laws AP, De Vuyst L (2004) Streptococcus thermophilus ST 111 produces a stable high-molecular-mass exopolysaccharide in milk-based medium. Int Dairy J 14:857–864

    Google Scholar 

  • Viel S, Capitani D, Mannina L, Segre A (2003) Diffusion-ordered NMR spectroscopy: a versatile tool for the molecular weight determination of uncharged polysaccharides. Biomacromolecules 4:1843–1847

    Article  Google Scholar 

  • York WS, Hantus S, Albersheim P, Darvill AG (1997) Determination of the absolute configuration of monosaccharides by 1H NMR spectroscopy of their per-O-(S)-2-methylbutyrate derivatives. Carbohydr Res 300:199–206

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Swedish Research Council (VR), The Knut and Alice Wallenberg Foundation, Carl Tryggers Stiftelse för Vetenskaplig Forskning, Magn. Bergvalls Stiftelse, the Academy of Finland (Project number 210653) and the Sino-Finnish Cooperative Project (2006DFA32620). The Swedish NMR Centre at Göteborg University is thanked for access to a high-field spectrometer. We thank Dr. Jesper Lind for assistance with the DLS measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Göran Widmalm.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Säwén, E., Huttunen, E., Zhang, X. et al. Structural analysis of the exopolysaccharide produced by Streptococcus thermophilus ST1 solely by NMR spectroscopy. J Biomol NMR 47, 125–134 (2010). https://doi.org/10.1007/s10858-010-9413-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-010-9413-0

Keywords

Navigation