Skip to main content

Advertisement

Log in

Effect of magnesium ion on crt gene expression in improving carotenoid yield of Rhodobacter sphaeroides

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

This study aimed at increasing carotenoid yield of Rhodobacter sphaeroides in wastewater treatment by adding magnesium ion (Mg2+). Results showed that Mg2+ could improve R. sphaeroides biomass and carotenoid yield effectively. The highest carotenoid yield of 4.83 ± 0.14 mg/g biomass and biomass production of 3900 ± 180 mg/L were achieved at optimal Mg2+ concentration of 15 mmol/L. Mechanism analysis revealed that Mg2+ could promote carotenoid production by regulating the expressions of crt genes. Up-regulation of crtBDA genes improved carotenoid biosynthesis of R. sphaeroides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aklujkar M, Beatty JT (2005) The PufX protein of Rhodobacter capsulatus affects the properties of bacteriochlorophyll a and carotenoid pigments of light-harvesting complex 1. Arch Biochem Biophys 443:21–32

    Article  CAS  PubMed  Google Scholar 

  • Aksu Z, Eren AT (2005) Carotenoids production by the yeast Rhodotorula mucilaginosa: use of agricultural wastes as a carbon source. Process Biochem 40:2985–2991

    Article  CAS  Google Scholar 

  • Brennan C (2003) Overexpression of Carotenoid Pathway Genes dxs, crtE, crtI, and crtB in Rhodococcus erythropolis AN12. Exper Microbial Genet

  • Chen DM, Han Y, Gu ZX (2006) Application of statistical methodology to the optimization of fermentative medium for carotenoids production by Rhodobacter sphaeroides. Process Biochem 41:1773–1778

    Article  CAS  Google Scholar 

  • Clesscerl LS, Greenberg AE, Eaton AD (1998) Standard methods for the examination of water and wastewater, 20th edn. American Public Health Association, Washington, DC

    Google Scholar 

  • Eroglu E, Gunduz U, Yucel M, Eroglu I (2010) Photosynthetic bacterial growth and productivity under continuous illumination or diurnal cycles with olive mill wastewater as feedstock. Int J Hydrogen Energy 35:5293–5300

    Article  CAS  Google Scholar 

  • Gu ZX, Chen DM, Han YB, Chen ZG, Gu FR (2008) Optimization of carotenoids extraction from Rhodobacter sphaeroides. LWT Food Sci Technol 41:1082–1088

    Article  CAS  Google Scholar 

  • Hakobyan L, Gabrielyan L, Trchounian A (2012) Ni (II) and Mg(II) ions as factors enhancing biohydrogen production by Rhodobacter sphaeroides from mineral springs. Int J Hydrogen Energy 37:7482–7486

    Article  CAS  Google Scholar 

  • Hunter CN, Daldal F, Thurnauer MC, Beatty JT (2008) The purple phototrophic bacteria. Springer, Berlin

    Google Scholar 

  • Imhoff JF, Trüper HG (1989) Purple nonsulfur bacteria. In: Staley JT (ed) Bergey’s manual of systematic bacteriology. The Williams & Wilkins Co., Baltimore, pp 1658–1682

    Google Scholar 

  • Kaewsuk J, Thorasampan W, Thanuttamavong M, Seo GT (2010) Kinetic development and evaluation of membrane sequencing batch reactor (MSBR) with mixed cultures photosynthetic bacteria for dairy wastewater treatment. J Environ Manage 91:1161–1168

    Article  CAS  PubMed  Google Scholar 

  • Kang Z, Zhang J, Zhou J, Qi Q, Du G, Chen J (2012) Recent advances in microbial production of δ-aminolevulinic acid and vitamin B12. Biotechnol Adv 30:1533–1542

    Article  CAS  PubMed  Google Scholar 

  • Kuo FS, Chien YH, Chen CJ (2012) Effects of light sources on growth and carotenoid content of photosynthetic bacteria Rhodopseudomonas palustris. Bioresour Technol 113:315–318

    Article  CAS  PubMed  Google Scholar 

  • Li JM, Peng LJ, Li J, Qiao YH (2014) Divergent responses of functional gene expression to various nutrient conditions during microcystin-LR biodegradation by Novosphingobium sp. THN1 strain. Bioresour Technol 156:335–341

    Article  CAS  PubMed  Google Scholar 

  • Liu B-F, Ren N-Q, Ding J, Xie G-J, Guo W-Q (2009) The effect of Ni2+, Fe2+ and Mg2+ concentration on photo-hydrogen production by Rhodopseudomonas faecalis RLD-53. Int J Hydrogen Energy 34:721–726

    Article  CAS  Google Scholar 

  • Lu P, Cheng G, Yang X, Cheng S (1999) Effects of Fe3+ and Mg2+ on the levels of β-carotene in inter-kindom fusant cell. Chin J Appl Environ Biol 5:175–177

    Google Scholar 

  • Maguire ME (1992) MgtA and MgtB: prokaryotic P-type ATPases that mediate Mg2+ influx. J Bioenerg Biomembr 24:319–328

    CAS  PubMed  Google Scholar 

  • Ng IW, Adams PG, Mothersole DJ, Vasilev C, Martin EC, Lang HP (2011) Carotenoids are essential for normal levels of dimerisation of the RC-LH1-PufX core complex of Rhodobacter sphaeroides: characterisation of R-26 as crtB (phytoene synthase) mutant. Biochim Biophys Acta (BBA) Bioenergetics 1807:1056–1063

    Article  CAS  Google Scholar 

  • Nishizaki T, Tsuge K, Itaya M, Doi N, Yanagawa H (2007) Metabolic engineering of carotenoid biosynthesis in Escherichia coli by ordered gene assembly in Bacillus subtilis. Appl Environ Microbiol 73:1355–1361

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Reyes LH, Gomez JM, Kao KC (2014) Improving carotenoids production in yeast via adaptive laboratory evolution. Metab Eng 21:26–33

    Article  CAS  PubMed  Google Scholar 

  • Shao JH, Yu GL, Wu ZX, Peng X, Li RH (2010) Responses of Synechocystis sp. PCC 6803 (cyanobacterium) photosystem II to pyrene stress. J Environ Sci 22:1091–1095

    Article  CAS  Google Scholar 

  • Snavely MD, Gravina SA, Cheung TT, Miller CG, Maguire ME (1991) Magnesium transport in Salmonella typhimurium: regulation of mgtA and mgtB expression. J Biol Chem 266:824–829

    CAS  PubMed  Google Scholar 

  • Takaichi S (2009) Distribution and biosynthesis of carotenoids. In: Hunter CN, Daldal F, Thurnauer MC, Beatty JT (eds) The purple phototrophic bacteria. Springer, Dordrecht, pp 97–117

    Chapter  Google Scholar 

  • Tao T, Grulich PF, Kucharski LM, Smith RL (1998) Magnesium transport in Salmonella typhimurium: biphasic magnesium and time dependence of the transcription of the mgtA and mgtCB loci. Microbiology 144:655–664

    Article  CAS  PubMed  Google Scholar 

  • Tim H, Damien JB, Jürg K (2014) Phototrophic bacteria for nutrient recovery from domestic wastewater. Water Res 50:18–26

    Article  Google Scholar 

  • Wu P, Zhang G, Li J, Lu H, Zhao W (2012) Effects of Fe2+ concentration on biomass accumulation and energy metabolism in photosynthetic bacteria wastewater treatment. Bioresour Technol 119:55–59

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the National Natural Science Foundation of China (51278489).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangming Zhang.

Additional information

Communicated by Reinhard Krämer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Li, X., Zhang, G. et al. Effect of magnesium ion on crt gene expression in improving carotenoid yield of Rhodobacter sphaeroides . Arch Microbiol 197, 1101–1108 (2015). https://doi.org/10.1007/s00203-015-1150-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-015-1150-z

Keywords

Navigation