Skip to main content
Log in

Sphingomonas panaciterrae sp. nov., a plant growth-promoting bacterium isolated from soil of a ginseng field

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Strain DCY91T, a Gram-stain-negative, rod-shaped, aerobic, non-motile bacterium, was isolated from soil of ginseng field in Gyeonggi province, South Korea. Strain DCY91T shared the highest 16S rRNA gene sequence similarity with Sphingomonas mucosissima DSM 17494T (98.55 %), Sphingomonas dokdonensis KACC 17420T (98.11 %) and Sphingomonas xinjiangensis DSM 26736T (96.68 %). The strain DCY91T was found to able to grow best in trypticase soy agar at 28 °C, at pH 7 and at 0.5 % NaCl. Ubiquinone 10 was identified as the isoprenoid quinone. The major polar lipids were identified as sphingoglycolipid, diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and phosphatidylcholine. The major fatty acids of strain DCY91T were identified as unsaturated C18:1 ω7c and saturated C16:0. The major polyamine content was sym-homospermidine. The DNA G + C content was determined to be 65.8 mol% (HPLC). After 6 days of incubation, strain DCY91T produced 9.64 ± 1.73 and 33.73 ± 4.66 µg/ml indole-3-acetic acid, using media without l-tryptophan and supplemented with l-tryptophan, respectively. Strain DCY91T was also weakly solubilized phosphate and produced siderophores. On the basis of the phenotypic characteristics, genotypic analysis and chemotaxonomic characteristics, strain DCY91T is considered to represent a novel species of the genus Sphingomonas, for which the name Sphingomonas panaciterrae sp. nov. is proposed. The type strain is DCY91T (=KCTC 42346T =JCM 30807T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • An H, Xu M, Dai J, Wang Y, Cai F, Qi H, Fang P, Fang C (2011) Sphingomonas xinjiangensis sp. nov., isolated from desert sand. Int J Syst Evol Microbiol 61(8):1865–1869

    Article  CAS  PubMed  Google Scholar 

  • Bauer AW, Kirby WMM, Sherris JC, Turck M (1966) Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 45:493–496

    CAS  PubMed  Google Scholar 

  • Busse HJ, Auling G (1988) Polyamine pattern as a chemotaxonomic marker within the Proteobacteria. Syst Appl Microbiol 11:1–8

    Article  CAS  Google Scholar 

  • Busse HJ, Denner EBM, Buczolits S, Salkinoja-Salonen M, Bennasar A, Kämpfer P (2003) Sphingomonas aurantiaca sp. nov., Sphingomonas aerolata sp. nov. and Sphingomonas faeni sp. nov., air- and dustborne and Antarctic, orange-pigmented, psychrotolerant bacteria, and emended description of the genus Sphingomonas. Int J Syst Evol Microbiol 53:1253–1260

    Article  CAS  PubMed  Google Scholar 

  • Collins MD (1985) Isoprenoid quinone analyses in bacterial classification and identification. In: Goodfellow M, Minnikin DE (eds) Chemical methods in bacterial systematics. Academic Press, London, pp 267–287

    Google Scholar 

  • Cowan ST, Steel KJ (1974) Manual for the identification of medical bacteria, 3rd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Ezaki T, Hashimoto Y, Yabuuchi E (1989) Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229

    Article  Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Feng GD, Yang SZ, Wang YH, Zhang XX, Zhao GZ, Deng MR, Zhu HH (2014) Description of a Gram-negative bacterium, Sphingomonas guangdongensis sp. nov. Int J Syst Evol Microbiol 64:1697–1702

    Article  CAS  PubMed  Google Scholar 

  • Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416

    Article  Google Scholar 

  • Glickmann E, Dessaux Y (1995) A critical examination of the specificity of the Salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Appl Environ Microbiol 61:793–796

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gomori G (1955) Preparation of buffers for use in enzyme studies. In: Colowick SP, Kaplan NO (eds) Methods in enzymology. Academic Press, New York, pp 138–146

    Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Huang J, Huang Z, Zhang ZD, He LY, Sheng XF (2014) Sphingomonas yantingensis sp. nov., a mineral-weathering bacterium isolated from purplish paddy soil. Int J Syst Evol Microbiol 64:1030–1035

    Article  CAS  PubMed  Google Scholar 

  • Huy H, Jin L, Lee KC, Kim SG, Lee JS, Ahn CY, Oh HM (2014) Sphingomonas daechungensis sp. nov., isolated from sediment of a eutrophic reservoir. Int J Syst Evol Microbiol 64:1412–1418

    Article  CAS  PubMed  Google Scholar 

  • Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S, Madden TL (2008) NCBI BLAST: a better web interface. Nucleic Acids Res 1:36 (Web Server issue):W5-9. doi:10.1093/nar/gkn201

  • Kawahara K, Kuraishi H, Zähringer U (1999) Chemical structure and function of glycosphingolipids of Sphingomonas spp and their distribution among members of the α-4 subclass of Proteobacteria. J Ind Microbiol Biotechnol 23:408–413

    Article  CAS  PubMed  Google Scholar 

  • Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH, Yi H, Won S, Chun J (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA Gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721

    Article  CAS  PubMed  Google Scholar 

  • Kim SJ, Moon JY, Lim JM, Ahn JH, Weon HY, Ahn TY, Kwon SW (2014) Sphingomonas aerophila sp. nov. and Sphingomonas naasensis sp. nov., isolated from air and soil, respectively. Int J Syst Evol Microbiol 64:926–932

    Article  CAS  PubMed  Google Scholar 

  • Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, Chichester, pp 115–176

    Google Scholar 

  • Lee KB, Liu CT, Anzai Y, Kim H, Aono T, Oyaizu H (2005) The hierarchical system of the ‘Alphaproteobacteria’: description of Hyphomonadaceae fam. nov., Xanthobacteraceae fam. nov. and Erythrobacteraceae fam. nov. Int J Syst Evol Microbiol 55:1907–1919

    Article  CAS  PubMed  Google Scholar 

  • Mesbah M, Premachandran U, Whitman WB (1989) Precise measurement of the G + C content of deoxyribonucleic acid by high performance liquid chromatography. Int J Syst Bacteriol 39:159–167

    Article  CAS  Google Scholar 

  • Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal A, Parlett JH (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2: 233–241

  • Park HK, Han JH, Kim TS, Joung Y, Cho SH, Kwon SW, Kim SB (2014) Sphingomonas aeria sp. nov. from indoor air of a pharmaceutical environment. Antonie Van Leeuwenhoek 107:47–53

    Article  CAS  PubMed  Google Scholar 

  • Pikovskaya RI (1948) Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Microbiologia 17:362–370

    CAS  Google Scholar 

  • Reddy GSN, Garcia-Pichel F (2007) Sphingomonas mucosissima sp. nov. and Sphingomonas desiccabilis sp. nov., from biological soil crusts in the Colorado Plateau, USA. Int J Syst Evol Microbiol 57:1028–1034

    Article  CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. DE: MIDI Inc, Newark

  • Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56

    Article  CAS  PubMed  Google Scholar 

  • Shokri D, Emtiazi G (2010) Indole-3-Acetic Acid (IAA) Production in Symbiotic and Non-symbiotic Nitrogen-fixing bacteria and its optimatization by Taguchi design. Curr Microbiol 61:217–225

    Article  CAS  PubMed  Google Scholar 

  • Skerman VBD (1967) A guide to the identification of the genera of bacteria, 2nd edn. Williams and Wilkins, Baltimore

    Google Scholar 

  • Song MJ, Yun HY, Kim YH (2014) Antagonistic Bacillus species as a biological control of ginseng root rot caused by Fusarium cf. incarnatum. J Ginseng Res 38(2):136–145

  • Taibi G, Schiavo MR, Gueli MC, Rindina PC, Muratore R, Nicotra CM (2000) Rapid and simultaneous high–performance liquid chromatography assay of polyamines and monoacetylpolyamines in biological specimens. J Chromatogr Biomed Sci Appl 745:431–437

    Article  CAS  Google Scholar 

  • Takeuchi M, Hamana K, Hiraishi A (2001) Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 51:1405–1417

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wayne L, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore EC, Murray RGE, Stackebrandt E, Starr MP, Truper HG (1987) Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464

    Article  Google Scholar 

  • Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yabuuchi E, Yano I, Oyaizu H, Hashimoto Y, Ezaki T, Yamamoto H (1990) Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov., and two genospecies of the genus Sphingomonas. Microbiol Immunol 34:99–119

    Article  CAS  PubMed  Google Scholar 

  • Yoon JH, Lee MH, Kang SJ, Lee SY, Tk Oh (2006) Sphingomonas dokdonensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 56:2165–2169

    Article  CAS  PubMed  Google Scholar 

  • You J, Liu X, Zhang B, Xie Z, Hou Z, Yang Z (2015) Seasonal changes in soil acidity and related properties in ginseng artificial bed soils under a plastic shade. J Ginseng Res 39:81–88

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang YQ, Chen YG, Li WJ, Tian XP, Xu LH, Jiang CL (2005) Sphingomonas yunnanensis sp. nov., a novel Gram-negative bacterium from a contaminated plate. Int J Syst Evol Microbiol 55:2361–2364

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by Institute of Planning and Evaluation for Technology (IPET #313038-03-1-S13020) in Food, Agriculture, Forestry and Fisheries, Republic of Korea, and also supported by a grant from the Next-Generation BioGreen 21 Program, Systems and Synthetic Agrobiotech Center (SSAC # PJ01116602), Rural Development Administration, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yeon-Ju Kim or Deok-Chun Yang.

Additional information

Communicated by Erko Stackebrandt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

203_2015_1134_MOESM1_ESM.tif

Supplementary material 1 The maximum-parsimony tree based on 16S rRNA gene sequence analysis showing phylogenetic relationships of strain DCY91T and members of the genus Sphingomonas (TIFF 10997 kb)

203_2015_1134_MOESM2_ESM.tif

Supplementary material 2 Two-dimensional TLC of the total polar lipids of Sphingomonas panaciterrae DCY91T (a) and S. mucosissima DSM 17494T (b), stained for total polar lipids with 5 % ethanolic molybdophosphoric acid. Abbreviations: SGL, sphingoglycolipid; DPG, diphosphatidylglycerol; PE, phosphatidylethanolamine; PG, phosphatidylglycerol; PC, phosphatidylcholine; L, unidentified lipid (TIFF 15383 kb)

Supplementary material 3 (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sukweenadhi, J., Kim, YJ., Kang, C.H. et al. Sphingomonas panaciterrae sp. nov., a plant growth-promoting bacterium isolated from soil of a ginseng field. Arch Microbiol 197, 973–981 (2015). https://doi.org/10.1007/s00203-015-1134-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-015-1134-z

Keywords

Navigation