Skip to main content
Log in

Proteomic analysis of conidia germination in Colletotrichum acutatum

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Colletotrichum acutatum is an important phytopathogenic fungus causing anthracnose in commercially important fruit crops, such as strawberry. The conidia produced by the fungus are survival structures which play a key role in host infection and fungal propagation. Despite its relevance to the fungal life cycle, conidial biology has not been extensively investigated. Here, we provide the first proteomic description of the conidial germination in C. acutatum by comparing the proteomic profiles of ungerminated and germinated conidia. Using two-dimensional electrophoresis combined with MALDI-TOF/TOF mass spectrometry, we have identified 365 proteins in 354 spots, which represent 245 unique proteins, including some proteins with key functions in pathogenesis. All these proteins have been classified according to their molecular function and their involvement in biological processes, including cellular energy production, oxidative metabolism, stress, fatty acid synthesis, protein synthesis, and folding. This report constitutes the first comprehensive study of protein expression during the early stage of the C. acutatum conidial germination. It advances our understanding of the molecular mechanisms involved in the conidial germination process, and provides a useful basis for the further characterization of proteins involved in fungal biology and fungus life cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adaskaveg JE, Hartin RJ (1997) Characterization of Colletotrichum acutatum isolates causing anthracnose of almond and peach in California. Phytopathology 87:979–987

    Article  CAS  PubMed  Google Scholar 

  • Bailey JA, O’Connell RJ, Pring RJ, Nash C (1992) Infection strategies of Colletotrichum species. In: Bailey JA, Jeger MJ (eds) Colletotrichum: biology, pathology and control. Commonwealth Agricultural Bureau International, Wallingford, pp 88–120

    Google Scholar 

  • Barros BHR, da Silva SH, Marques ER, Rosa JC, Yatsuda AP, Roberts DW, Braga GUL (2010) A proteomic approach to identifying proteins differentially expressed in conidia and mycelium of the entomopathogenic fungus Metarhizium acridum). Fungal biology 114:572–579

    Article  CAS  PubMed  Google Scholar 

  • Bhadauria V, Wang LX, Peng YL (2010) Proteomic changes associated with deletion of the Magnaporthe oryzae conidial morphology-regulating gene COM1. Biol Direct 5:61

    Article  PubMed  Google Scholar 

  • Bourett TM, Howard RJ (1992) Actin in penetration pegs of the fungal rice blast pathogen, Magnaporthe grisea. Protoplasma 168:20–26

    Article  CAS  Google Scholar 

  • Brown SH, Yarden O, Gollop N, Chen S, Zveibil A, Belausov E, Freeman S (2008) Differential protein expression in Colletotrichum acutatum: changes association with reactive oxygen species and nitrogen starvation implicated in pathogenicity on strawberry. Mol Plant Pathogen 9:171–190

    Article  CAS  Google Scholar 

  • Browne GJ, Proud CJ (2002) Regulation of peptide-chain elongation in mammalian cells. Eur J Biochem 269:5360–5368

    Article  CAS  PubMed  Google Scholar 

  • Buhr TL, Dickman MB (1997) Gene expression analysis during conidial germ tube and appressorium development in Colletotrichum trifolii. Appl Environ Microbiol 63:2378–2383

    CAS  PubMed  Google Scholar 

  • Carbú M, Fernández-Acero FJ, Garrido C, Rebordinos LG, Vallejo IF, Cantoral JM (2004) Estudio de la competitividad de Botrytis cinerea en viñedos del marco vitiviñicola de Jerez. Tecnología del Vino 21:34–38

    Google Scholar 

  • Consejería de Agricultura y Pesca, Junta de Andalucía (2005) Government of Andalusia. http://www.juntadeandalucia.es/organismos/agriculturaypesca.html (in Spanish)

  • Cooper B, Neelam A, Campbell KB, Lee J, Liu G, Garrett WM, Scheffler B, Tucker ML (2007) Protein accumulation in the germinating Uromyces appendiculatus uredospore. Mol Plant Microbe Interact 20:857–866

    Article  CAS  PubMed  Google Scholar 

  • Coux O, Tanaka K, Goldberg AL (1996) Structure and functions of the 20S and 26S proteasomes. Annu Rev Biochem 65:801–847

    Article  CAS  PubMed  Google Scholar 

  • Curto M, Camafeita E, Lopez JA, Meldonado AM, Rubiales D, Jorrin JV (2006) A proteomic approach to study pea (Pisum sativum) responses to powdery mildew (Erysiphe pisi). Proteomics 6:163–174

    Article  Google Scholar 

  • de Oliverira JM, de Graaff LH (2011) Proteomics of industrial fungi: trends and insights for biotechnology. Appl Microbiol Biotechnol 89:225–237

    Article  Google Scholar 

  • Deacon J (2006) Fungal Biology. Wiley-Blackwell, Publishing Ltd., Oxford

    Google Scholar 

  • Dean R, Van Kan JA, Pretorius ZA, DI Hammond-Kosac KE, Pietro A, Spanu PD, Rudd JJ, Dickman M, Kahmann R, Ellis J, Foster GD (2012) The Top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol 13:414–430

    Article  PubMed  Google Scholar 

  • Doehlemann G, Berndt P, Hahn M (2006) Different signaling pathways involving a Gα protein, cAMP and MAP kinase control germination of Botrytis cinerea conidia. Mol Microbiol 59:821–835

    Article  CAS  PubMed  Google Scholar 

  • El-Bebany AF, Rampitsch C, Daayf F (2010) Proteomic analysis of the phytopathogenic soil-borne fungus Verticillium dahliae reveals differential protein expression in isolates that differ in aggressiveness. Proteomics 10:289–303

    Article  CAS  PubMed  Google Scholar 

  • EPPO/CABI (1997) Quarantine Pests for Europe, 2nd edition. In: Smith IM, McNamara DG, Scott PR, Holderness M (eds), CABI International, Wallingford, UK, pp 1425

  • Espino JJ, Gutierrez-Sanchez G, Brito N, Shah P, Orlando R, González C (2010) The Botrytis cinerea early secretome. Proteomics 10:3020–3034

    Article  CAS  PubMed  Google Scholar 

  • Fernández-Acero FJ, Jorge I, Calvo E, Vallejo I, Carbú M, Camafeita E, López JA, Cantoral JM, Jorrín J (2006) Two-dimensional electrophoresis protein profile of the phytopathogenic fungus Botrytis cinerea. Proteomics 6:S88–S96

    Article  PubMed  Google Scholar 

  • Fernández-Acero FJ, Jorge I, Calvo E, Vallejo I, Carbu M, Camafeita E, Garrido C, Lopez JA, Jorrin J, Cantoral JM (2007) Proteomic analysis of phytopathogenic fungus Botrytis cinerea as a potential tool for identifying pathogenicity factors, therapeutic targets and for basic research. Arch Microbiol 187:207–215

    Article  PubMed  Google Scholar 

  • Fernández-Acero FJ, Colby T, Harzen A, Cantoral JM, Schmidt J (2009) Proteomic analysis of the phytopathogenic fungus Botrytis cinerea during cellulose degradation. Proteomics 9:2892–2902

    Article  PubMed  Google Scholar 

  • Fernández-Acero FJ, Colby T, Harzen A, Carbú M, Wieneke U, Cantoral JM, Schmidt J (2010) 2-DE proteomic approach to the Botrytis cinerea secretome induced with different carbon sources and plant-based elicitors. Proteomics 10:2270–2280

    Article  PubMed  Google Scholar 

  • Fernández-Acero FJ, Carbú M, El-Akhal MR, Garrido C, González-Rodríguez VE, Cantoral JM (2011) Development of proteomics-based fungicides: new strategies for environmentally friendly control of fungal plant diseases. Int J Mol Sci 12:795–816

    Article  Google Scholar 

  • Freeman S, Katan T (1997) Identification of Colletotrichum species responsible for anthracnose and root necrosis of strawberry in Israel. Phytopathology 87:516–521

    Article  CAS  PubMed  Google Scholar 

  • Garrido C, Carbú M, Fernández-Acero FJ, Budge G, Vallejo I, Colyer A, Cantoral JM (2008) Isolation and pathogenicity of Colletotrichum spp. causing anthracnose of strawberry in south west Spain. Eur J Plant Pathol 120:409–415

    Article  CAS  Google Scholar 

  • Garrido C, Carbú M, Fernández-Acero FJ, Boonham N, Colyer A, Cantoral JM, Budge J (2009) Development of protocols for detection of Colletotrichum acutatum and monitoring of strawberry anthracnose using real-time PCR. Plant Pathol 58:43–51

    Article  CAS  Google Scholar 

  • Garrido C, Cantoral JM, Carbú M, Gonzalez-Rodriguez VE, Fernández-Acero FJ (2010) New proteomic approaches to plant pathogenic fungi. Curr Proteomics 4:306–315

    Article  Google Scholar 

  • Garrido C, Carbú M, Fernández-Acero FJ, González-Rodríguez VE, Cantoral JM (2011) New insights in the study of strawberry fungal pathogens. Genes Genomes Genomics 5(1):24–39

    Google Scholar 

  • Gonzalez-Fernandez R, Jorrin-Novo JV (2012) Contribution of proteomics to the study of plant pathogenic fungi. J Proteome Res 11:3–16

    Article  CAS  PubMed  Google Scholar 

  • González-Rodríguez VE, Garrido C, Carbú M, Cantoral JM, Fernández-Acero FJ (2010) Proteomic approach to Botrytis cinerea survival structures. Proteómica 5:130

    Google Scholar 

  • Heath IB, Gupta G, Bai S (2000) Plasma membrane-adjacent actin filaments, but not microtubules, are essential for both polarization and hyphal tip morphogenesis in Saprolegnia ferax and Neurospora crassa. Fungal Genet Biol 3:45–62

    Article  Google Scholar 

  • Hernández R, Nombela C, Diez-Orejas R, Gil C (2004) Two-dimensional reference map of Candida albicans hyphal forms. Proteomics 4:374–382

    Article  PubMed  Google Scholar 

  • Howard CM, Mass JL, Chandler CK, Albergts EE (1992) Anthracnose of strawberry caused by the Colletotrichum complex in Florida. Plant Dis 76:976–981

    Article  Google Scholar 

  • Khang CH, Berruyer R, Giraldo MC, Kankanala P, Park SY, Czymmek K, Kang S, Valent B (2010) Translocation of Magnaporthe oryzae effectors into rice cells and their subsequent cell-to-cell movement. Plant Cell 22:16

    Google Scholar 

  • Kim YK, Li D, Kolattukudy PE (1998) Induction of Ca2+-Calmodulin Signaling by Hard-Surface Contact Primes Colletotrichum gloeosporioides Conidia To Germinate and Form Appressoria. J Bacteriol 180:5144–5150

    CAS  PubMed  Google Scholar 

  • Kim ST, Yu S, Kim SG, Kim HJ, Kang SY, Hwang DH, Jang YS, Kang KY (2004) Proteomics analysis of rice blast fungus (Magnaporthe grisea) proteome during appressorium formation. Proteomics 4:3579–3587

    Article  CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Leng W, Liu T, Li R, Yang J, Wei C, Zhang W, Jin Q (2008) Proteomic profile of dormant Trichophyton rubrum conidia. BMC Genomics 9:303

    Article  PubMed  Google Scholar 

  • Li B, Lai T, Qin G, Tian S (2010) Ambient pH stress inhibits spore germination of Penicillium expansum by impairing protein synthesis and folding: a proteomic-based study. J Proteome Res 9:298–307

    Article  CAS  PubMed  Google Scholar 

  • Lim D, Hains P, Walsh B, Bergquist P, Nevalainen H (2001a) Proteins associated with the cell envelope of Trichoderma reesei: a proteomics approach. Proteomics 1:899–910

    Article  CAS  PubMed  Google Scholar 

  • Lim EK, Li Y, Parr A, Jackson R, Ashford DA, Bowles DJ (2001b) Identification of glucosyltransferase genes involved in sinapate metabolism and lignin synthesis in Arabidopsis. J Biol Chem 276:4344–4349

    Article  CAS  PubMed  Google Scholar 

  • Lyon GD, Goodman BA, Willianson B (2004) Botrytis cinerea perturbs redox processes as an attack strategy in plants. In: Elad BWY, Tudzynski P, Delen N (eds) Botrytis: biology, pathology, and control. Kluwer, Dordrech, pp 119–142

  • Maddi A, Bowman SM, Free SJ (2009) Trifluoromethanesulfonic acid-based proteomic analysis of cell wall and secreted proteins of the ascomycetous fungi Neurospora crassa and Candida albicans. Fungal Genet Biol 46:768–781

    Article  CAS  PubMed  Google Scholar 

  • Mitchell TK, Dean RA (1995) The cAMP dependent protein kinase catalytic subunit is required for appressorium formation and pathogenesis by the rice blast pathogen Magnaporthe grisea. Plant Cell 7:1869–1878

    CAS  PubMed  Google Scholar 

  • Moriwaki J, Tsukiboshi T, Sato T (2002) Grouping of Colletotrichum species in Japan based on rDNA sequences. J Gen Plant Pathol 68:307–320

    Article  CAS  Google Scholar 

  • Nandakumar MP, Marten MR (2002) Comparison of lysis methods and preparation protocols for one-and two-dimensional electrophoresis of Aspergillus oryzae intracellular proteins. Electrophoresis 23:2216–2222

    Article  CAS  PubMed  Google Scholar 

  • Noir S, Colby T, Harzen A, Schmidt J, Panstruga R (2009) A proteomic analysis of the powdery mildew (Blumeria graminis f.sp. hordei) conidiospores. Mol Plant Pathol 10:223–236

    Article  CAS  PubMed  Google Scholar 

  • Oh YT, Ahn CS, Kim JG, Ro HS, Lee CW, Kim JW (2010) Proteomic analysis of early phase of conidia germination in Aspergillus nidulans. Fungal Genet Biol 47:246–253

    Article  CAS  PubMed  Google Scholar 

  • Osherov N, May GS (2001) The molecular mechanisms of conidial germination. FEMS Microbiol Lett 199:153–160

    Article  CAS  PubMed  Google Scholar 

  • Rossignol T, Kobi D, Jacquet-Gutfreund L, Blondin B (2009) The proteome of a wine yeast strain during fermentation, correlation with the transcriptoma. J Appl Microbiol 107:47–55

    Article  CAS  PubMed  Google Scholar 

  • Schirawski J, Mannhaupt G, Münch K, Brefort T, Schipper K, Doehlemann G, Di Stasio M, Rössel N, Mendoza-Mendoza A, Pester D, Müller O, Winterberg B, Meyer E, Ghareeb H, Wollenberg T, Münsterkötter M, Wong P, Walter M, Stukenbrock E, Güldener U, Kahmann R (2010) Pathogenicity determinants in smut fungi revealed by genome comparison. Science 330(6010):1546–1548

    Article  CAS  PubMed  Google Scholar 

  • Seong KY, Zhao X, Xu JR, Güldener U, Kistler HC (2008) Conidial germination in the filamentous fungus Fusarium graminearum. Fungal Genet Biol 45:389–399

    Article  CAS  PubMed  Google Scholar 

  • Shah P, Atwood JA, Orlando R, El Mubarek H, Podila GK, Davis MR (2009) Comparative proteomic analysis of Botrytis cinerea secretome. J Proteome Res 8:1123–1130

    Article  CAS  PubMed  Google Scholar 

  • Siewers V, Viaud M, Jimenez-Teja D, Collado IG, Gronover CS, Pradier JM, Tudzynski B, Tudzynski P (2005) Functional analysis of the cytochrome P450 monooxygenase gene bcbot1 of Botrytis cinerea indicates that botrydial is a strain-specific virulence factor. Mol Plant Microbe Interact 18:602–612

    Article  CAS  PubMed  Google Scholar 

  • Smith BJ, Black LL (1990) Morphological, cultural and pathogenic variation among Colletotrichum species isolated from strawberry. Plant Dis 74:69–76

    Article  Google Scholar 

  • Suckau D, Resemann A, Schuerenberg M, Hufnagel P, Franzen J, Holle A (2003) A novel MALDI LIFT-TOF/TOF mass spectrometer for proteomics. Anal Bioanal Chem 376(7):952–965

    Google Scholar 

  • Takano Y, Kubo Y, Shimizu K, Mise K, Okuno T, Furusawa I (1995) Structural analysis of PKS1, a polyketide synthase gene involved in melanin biosynthesis in Colletotrichum lagenarium. Mol Gen Genet 249:162–167

    Article  CAS  PubMed  Google Scholar 

  • Taylor RD, Saparno A, Blackwell B, Anoop V, Gleddie S, Tinker NA, Harris LJ (2008) Proteomic analysis of Fusarium graminearum grown under mycotoxin-inducing conditions. Proteomics 8(11):2256–2265

    Article  CAS  PubMed  Google Scholar 

  • Teutschbein J, Albrecht D, Potsch M, Guthke R, Aimanianda V, Clavaud C, Latge JP, Brakhage AA, Kniemeyer O (2009) Proteome profiling and functional classification of intracellular proteins from conidia of the human-pathogenic mold Aspergillus fumigatus. J Proteome Res 9:3427–3442

    Article  Google Scholar 

  • Vaillancourt L, Ma LJ, Thon M, Dickman M, Young SK, Zeng Q, Koehrsen M, Alvarado L, Berlin A, Borenstein D, Chen Z, Engels R, Freedman E, Gellesch M, Goldberg J, Griggs A, Gujja S, Heiman D, Hepburn T, Howarth C, Jen D, Larson L, Lewis B, Mehta T, Park D, Pearson M, Roberts A, Saif S, Shea T, Shenoy N, Sisk P, Stolte C, Sykes S, Walk T, White J, Yandava C, Haas B, Galagan J, Nusbaum C, Birren B (2009) The genome sequence of Glomerella graminicola strain M1.001. The Broad Institute Genome Sequencing Platform. Broad Institute of MIT and Harvard, Cambridge Center

  • Viaud MC, Balhadere PV, Talbot NJ (2002) A Magnaporthe grisea cyclophilin acts as a virulence determinant during plant infection. Plant Cell 14:917–930

    Article  CAS  PubMed  Google Scholar 

  • Vödisch M, Albrecht D, Leßing F, Schmidt AD, Winkler R, Guthke R, Brakhage AA, Kniemeyer O (2009) Two-dimensional proteome reference maps for the human pathogenic filamentous fungus Aspergillus fumigatus. Proteomics 9(5):1407–1415

    Google Scholar 

  • Xiao CL, MacKenzie SJ, Legard DE (2004) Genetic and pathogenic analysis of Colletotrichum gloeosporioides isolates from strawberry and non cultivated hosts. Phytopathology 94:446–453

    Article  CAS  PubMed  Google Scholar 

  • Yajima W, Kav NN (2010) The proteome of the phytopathogenic fungus Sclerotinia sclerotiorum. Fungal Biol 114(8):619–627

    Article  Google Scholar 

  • Yaneva IA, Niehaus K (2005) Molecular cloning and characterisation of a Rab-binding GDP-dissociation inhibitor from Medicago truncatula. Plant Physiol Biochem 43:203–212

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, Dickman MB (1997) Regulation of cAMP and cAMP dependent protein kinase during conidial germination and appressorium formation in Colletotrichum trifolii. Physiol Mol Plant Pathol 50:117–127

    Article  CAS  Google Scholar 

  • Zahiri AR, Babu BJ (2005) Differential gene expression during teliospore germination in Ustilago maydis. Mol Genet Genomics 273:394–403

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research has been financed by the Spanish Government DGICYT-AGL2009-13359-CO2/AGR, by the Andalusian Government: Junta de Andalucía, PO7-FQM-002689, http://www.juntadeandalucia.es/innovacioncienciayempresa; Programa Operativo 2007-2013 (FEDER-FSE) (18INSV2407, 18INSV2610), and by the CeiA3 International Campus of Excellence in Agrifood (18INACO177.002AA, http://www.uco.es/cei-A3/). Mohamed Rabie El-Akhal was recipient of an Erasmus-Averroès post-doctoral fellowship. Special thanks to Ursula Wieneke and Carlos Garrido for the experimental support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Javier Fernández-Acero.

Additional information

Communicated by Erko Stackebrandt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1 shows the complete MS/MS data for spot identification and protein annotations (XLS 135 kb).

Supplementary Figure 1 shows a digital image during conidial germination in liquid Volgel medium (DOC 234 kb).

203_2013_871_MOESM3_ESM.doc

Supplementary Fig. 4 shows a distribution of identified proteins from the proteome of germinated conidia of C. acutatum into Gene Ontology categories, according to their involvement in biological processes (C) and their molecular function (D) (DOC 336 kb).

Rights and permissions

Reprints and permissions

About this article

Cite this article

El-Akhal, M.R., Colby, T., Cantoral, J.M. et al. Proteomic analysis of conidia germination in Colletotrichum acutatum . Arch Microbiol 195, 227–246 (2013). https://doi.org/10.1007/s00203-013-0871-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-013-0871-0

Keywords

Navigation