Skip to main content
Log in

Aggregation of selected plant growth promoting Methylobacterium strains: role of cell surface components and hydrophobicity

  • Short Communication
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The bacterial cell surface plays a major role in the bacterial aggregation that in turn plays a positive role in affecting the bacterial dispersion and survival in soil and their ability to adhere to plant surfaces. Plant growth–promoting Methylobacterium strains, Methylobacterium goesingense CBMB5, Methylobacterium sp. CBMB12, Methylobacterium oryzae CBMB20, Methylobacterium fujisawaense CBMB37, M. oryzae CBMB110 and Methylobacterium suomiense CBMB120 were evaluated for aggregation efficiency. Aggregation occurred in all test strains under high C/N growth conditions, and the strain CBMB12 showed the highest aggregation of 53.4 % at 72 h. Disaggregation compound treatment studies revealed the role of protein–protein interaction in Methylobacterium strains except CBMB110 and CBMB120 strains, where a possible carbohydrate–protein interaction is suspected. Surface layer protein extraction by LiCl followed by SDS-PAGE analysis showed the presence of proteins at molecular weights ranging from 41 to 49 kDa. Methylobacterium strains under aggregated conditions showed increased hydrophobicity compared to the cells under standard grown conditions. A relatively higher hydrophobicity of 50.1 % as evident by the adhesion with xylene was observed with strain CBMB12 under aggregated condition. This study reports the aggregation ability in plant growth–promoting Methylobacterium strains and the possible involvement of cellular components and hydrophobicity in this phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Anandham R, Indiragandhi P, Madhaiyan M, Chung J, Ryu KY, Jee HJ, Sa T (2009) Thiosulfate oxidation and mixotrophic growth of Methylobacterium goesingense and Methylobacterium fujisawaense. J Microbiol Biotechnol 19(1):17–22

    PubMed  CAS  Google Scholar 

  • Bahat-Samet S, Sowinski C, Okon Y (2004) Arabinose content of exocellular polysaccharides play a role in cell aggregation of Azospirillum brasilense. FEMS Microbiol Lett 237:195–203

    Article  PubMed  CAS  Google Scholar 

  • Bashan Y, Levanony H, Whitmoyer RE (1991) Root surface colonization of non-cereal crop plants by pleomorphic Azospirillum brasilense. J Gen Microbiol 139:379–385

    Google Scholar 

  • Bellon-Fontaine MN, Rault J, Van-Oss CJ (1996) Microbial adhesion to solvents: a novel method to determine the electron donor/electron acceptor or Lewis acid-base properties of microbial cells. Colloids Surf 7:47–53

    Article  CAS  Google Scholar 

  • Bhaduri S, Demchick PH (1983) Simple and rapid method for disruption of bacteria for protein studies. Appl Environ Microbiol 46:941–943

    PubMed  CAS  Google Scholar 

  • Bozzola JJ, Russell LD (1998) Electron microscopy, 2nd edn. Jones and Bartlett, Sudbury

    Google Scholar 

  • Burdman S, Jurkevitch E, Schnartsburd B, Hampel M, Okon Y (1998) Extracellular polysaccharide composition of Azospirillum brasilense and its relation to cell aggregation. Microbiology 144:1989–1999

    Article  PubMed  CAS  Google Scholar 

  • Crowley PJ, Fischlschweiger W, Coleman SE, Bleiweis AS (1987) Intergeneric bacterial coaggregations involving mutans Streptococci and oral actinomyces. Infect Immun 55:2695–2700

    PubMed  CAS  Google Scholar 

  • Del Gallo M, Negi M, Neyra CA (1989) Calcofluor-binding and lectin-binding exocellular polysaccharides of Azospirillum brasilense and Azospirillum lipoferum. J Bacteriol 171:3504–3510

    PubMed  Google Scholar 

  • Del Re B, Sqorbati B, Miglioli M, Palenzona D (2000) Adhesion, autoaggregation and hydrophobicity of 13 strains of Bifidobacterium longum. Lett Appl Microbiol 31:438–442

    Article  PubMed  Google Scholar 

  • Galdiero E, Marcatili A, Donnarumma G, de Martino L, Cipollaro de l’Ero G (1993) Correlation between changes in surface hydrophobicity and interaction of Streptococcus pyogenes with human poly-morphonuclear leukocytes after prolonged starvation in sea water. Res Microbiol 144:609–616

    Article  PubMed  CAS  Google Scholar 

  • Gallego V, Garcia MT, Ventosa A (2006) Methylobacterium adhaesivum sp. nov., a methylotrophic bacterium isolated from drinking water. Int J Syst Evol Microbiol 56:339–342

    Article  PubMed  CAS  Google Scholar 

  • Green PN (1992) The genus Methylobacterium. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes, 2nd edn. Springer, New York, pp 2342–2349

    Google Scholar 

  • Grimaudo NJ, Nesbitt WE (1997) Coaggregation of Candida albicans with oral Fusobacterium species. Oral Microbiol Immunol 12:168–173

    Article  PubMed  CAS  Google Scholar 

  • James DW Jr, Suslow TV, Steinback KE (1985) Relationship between rapid, firm adhesion and long-term colonization of roots by bacteria. Appl Environ Microbiol 50:392–397

    PubMed  CAS  Google Scholar 

  • Kaci Y, Heyraud A, Barakat M, Heulin T (2005) Isolation and identification of an EPS-producing Rhizobium strain from arid soil (Algeria): characterization of its EPS and the effect of inoculation on wheat rhizosphere soil structure. Res Microbiol 156:522–531

    Article  PubMed  CAS  Google Scholar 

  • Kim C, Kecskes ML, Decker-Rosalind J, Gilchrist K, Newpeter B, Kennedy-Ivan R, Kim S, Sa T (2005) Wheat root colonization and nitrogenase activity by Azospirillum isolates from crop plants in Korea. Can J Microbiol 51(11):948–956

    Article  PubMed  CAS  Google Scholar 

  • Knief C, Frances L, Cantet F, Vorholt JA (2008) Cultivation-independent characterization of Methylobacterium populations in the plant phyllosphere by automated ribosomal intergenic spacer analysis. Appl Environ Microbiol 74:2218–2228

    Article  PubMed  CAS  Google Scholar 

  • Kos J, Suskovic G, Vukovic S, Simpraga M, Frece J, Matosic S (2003) Adhesion and aggregation ability of probiotic strain Lactobacillus acidophilus M92. J Appl Micorbiol 94:981–987

    Article  CAS  Google Scholar 

  • Laemmeli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 15:680–685

    Article  Google Scholar 

  • Madhaiyan M, Park MS, Lee HS, Kim CW, Lee KH, Seshadri S, Sa T (2004) Phenotypic characterization of methylotrophic N2 fixing bacteria isolated from rice (Oryza sativa L.). Korean J Soil Sci Fert 37:46–53

    CAS  Google Scholar 

  • Madhaiyan M, Poonguzhali S, Ryu J, Sa T (2006) Regulation of ethylene levels in canola (Brassica campestris) by 1-aminocyclopropane-1-carboxylate deaminase-containing Methylobacterium fujisawaense. Planta 224:268–278

    Article  PubMed  CAS  Google Scholar 

  • Madi L, Henis Y (1989) Aggregation in Azospirillum brasilense Cd: conditions and factors involved in cell-to-cell adhesion. Plant Soil 115:89–98

    Article  Google Scholar 

  • Malik A, Kakii K (2003) Intergeneric coaggregations among Oligotropha carboxidovorans and Acinetobacter species present in activated sludge. Biotechnol Lett 25:981–986

    Article  PubMed  CAS  Google Scholar 

  • Min KR, Zimmer MN, Richard AH (2010) physicochemical parameters influencing coaggregation between the freshwater bacteria Sphingomonas natatoria 2.1 and Micrococcus luteus 2.13. Biofouling 26(8):931–940

    Article  PubMed  CAS  Google Scholar 

  • Ntsaluba L, Agundiade O, Mabinya L, Okoh A (2011) Studies on bioflocculant production by Methylobacterium sp. Obi isolated from a freshwater environment in South Africa. Afr J Microbiol Res 5(26):4533–4540

    CAS  Google Scholar 

  • Omer ZS, Tombolini R, Gerhardson B (2004) Plant colonization by pink-pigmented facultative methylotrophic bacteria (PPFMs). FEMS Microbiol Ecol 47:319–326

    Article  PubMed  CAS  Google Scholar 

  • Pelletier C, Bouley C, Cayuela C, Bouttier S, Bourlioux P, Bellon-Fontaine MN (1997) Cell surface characteristics of Lactobacillus casei subsp. casei, Lactobacillus paracasei subsp. paracasei, and Lactobacillus rhamnosus strains. Appl Environ Microbiol 63:1725–1731

    PubMed  CAS  Google Scholar 

  • Richard AH, Gilbert P, Handley PS (2004) Influence of growth environment on coaggregation between freshwater biofilm bacteria. J Appl Microbiol Biotechnol 96:1367–1373

    Google Scholar 

  • Rosenberg M, Doyle R (1990) Microbial cell surface hydrophobicity: history, measurement and significance. In: Doyle RJ, Rosenberg M (eds) Microbial cell surface hydrophobicity. American Society for Micobiology, Washington, pp 1–37

    Google Scholar 

  • Sadasivan L, Neyra CA (1985) Flocculation in Azospirillum brasilense and Azospirillum lipoferum: exopolysaccharides and cyst formation. J Bacteriol 163:716–723

    PubMed  CAS  Google Scholar 

  • Schauer S, Kutschera U (2011) A novel growth-promoting microbe, Methylobacterium funariae sp. nov., isolated from the leaf surface of a common moss. Plant Signal Behav 6(4):510–515

    Article  PubMed  CAS  Google Scholar 

  • Yim WJ, Chauhan PS, Madhaiyan M, Tipayno SC, Sa T (2010) Plant growth promontory attributes by 1-aminocyclopropane-1-carboxylate (ACC) deaminase producing Methylobacterium oryzae strains isolated from rice 19th World Congress of Soil Science, Soil Solutions for a Changing World 1–6 August 2010. Brisbane, Australia

    Google Scholar 

Download references

Acknowledgments

This research was supported by basic science research program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2012R1A2A1A01005294).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tongmin Sa.

Additional information

Communicated by Jorg Membrillo-Hernández.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joe, M.M., Saravanan, V.S. & Sa, T. Aggregation of selected plant growth promoting Methylobacterium strains: role of cell surface components and hydrophobicity. Arch Microbiol 195, 219–225 (2013). https://doi.org/10.1007/s00203-013-0866-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-013-0866-x

Keywords

Navigation