Skip to main content

Advertisement

Log in

Analysis of the surface proteins of Acidithiobacillus ferrooxidans strain SP5/1 and the new, pyrite-oxidizing Acidithiobacillus isolate HV2/2, and their possible involvement in pyrite oxidation

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Two strains of rod-shaped, pyrite-oxidizing acidithiobacilli, their cell envelope structure and their interaction with pyrite were investigated in this study. Cells of both strains, Acidithiobacillus ferrooxidans strain SP5/1 and the moderately thermophilic Acidithiobacillus sp. strain HV2/2, were similar in size, with slight variations in length and diameter. Two kinds of cell appendages were observed: flagella and pili. Besides a typical Gram-negative cell architecture with inner and outer membrane, enclosing a periplasm, both strains were covered by a hitherto undescribed, regularly arranged 2-D protein crystal with p2-symmetry. In A. ferrooxidans, this protein forms a stripe-like structure on the surface. A similar surface pattern with almost identical lattice vectors was also seen on the cells of strain HV2/2. For the surface layer of both bacteria, a direct contact to pyrite crystals was observed in ultrathin sections, indicating that the S-layer is involved in maintaining this contact site. Observations on an S-layer-deficient strain show, however, that cell adhesion does not strictly depend on the presence of the S-layer and that this surface protein has an influence on cell shape. Furthermore, the presented data suggest the ability of the S-layer protein to complex Fe3+ ions, suggesting a role in the physiology of the microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Baumeister W, Lembcke G (1992) Structural features of archaebacterial cell envelopes. J Bioenerg Biomembr 24:567–575

    Article  PubMed  CAS  Google Scholar 

  • Bayley DP, Koval SF (1994) Membrane association and isolation of the S-layer protein of Methanoculleus marisnigri. Can J Microbiol 40:237–241

    Article  Google Scholar 

  • Beveridge TJ, Pouwels PH, Sára M, Kotiranta A, Lounatmaa K, Kari K, Kerosuo E, Haapasalo M, Egelseer EM, Schocher I, Sleytr UB, Morelli L, Callegari ML, Nomellini JF, Bingle WH, Smit J, Leibovitz E, Lemaire M, Miras I, Salamitou S, Béguin P, Ohayon H, Gounon P, Matuschek M, Koval SF (1997) Functions of S-layers. FEMS Microbiol Rev 20:99–149

    Article  PubMed  CAS  Google Scholar 

  • Burghardt T, Saller M, Gürster S, Müller D, Meyer C, Jahn U, Hochmuth E, Deutzmann R, Siedler F, Babinger P, Wirth R, Huber H, Rachel R (2008) Insight into the proteome of the hyperthermophilic Crenarchaeon Ignicoccus hospitalis: the major cytosolic and membrane proteins. Arch Microbiol 190:379–394

    Article  PubMed  CAS  Google Scholar 

  • Carter P (1971) Spectrophotometric determination of serum iron at the submicrogram level with a new reagent (ferrozine). Anal Biochem 40:450–458

    Article  PubMed  CAS  Google Scholar 

  • Cheong G-W, Cejka Z, Peters J, Stetter KO, Baumeister W (1991) The surface protein layer of Methanoplanus limicola: three-dimensional structure and chemical characterization. System Appl Microbiol 14:209–217

    CAS  Google Scholar 

  • Daoud J, Karamanev D (2006) Formation of jarosite during Fe2+ oxidation by Acidithiobacillus ferrooxidans. Miner Eng 19:960–967

    Article  CAS  Google Scholar 

  • Eichler J (2003) Facing extremes: archaeal surface-layer (glyco)proteins. Microbiology 149:3347–3351

    Article  PubMed  CAS  Google Scholar 

  • Engelhardt H, Peters J (1998) Structural research on surface layers: a focus on stability, surface layer homology domains, and surface layer-cell wall interactions. J Struct Biol 124:276–302

    Article  PubMed  CAS  Google Scholar 

  • Etzel K, Klingl A, Huber H, Rachel R, Schmalz G, Thomm M, Depmeier W (2008) Etching of 111 and 210 synthetic pyrite surfaces by two archaeal strains, Metallosphaera sedula and Sulfolobus metallicus. Hydrometallurgy 94:116–120

    Article  CAS  Google Scholar 

  • Fletcher CM, Coyne MJ, Bentley DL, Villa OF, und Comstock LE (2007) Phase-variable expression of a family of glycoproteins imparts a dynamic surface to a symbiont in its human intestinal ecosystem. PNAS 104:2413–2418

    Article  PubMed  CAS  Google Scholar 

  • Fowler TA, Holmes PR, Crundwell FK (1999) Mechanism of pyrite dissolution in the presence of Thiobacillus ferrooxidans. Appl Environ Microbiol 65:2987–2993

    PubMed  CAS  Google Scholar 

  • Gehrke T, Telegdi J, Thierry D, Sand W (1998) Importance of extracellular polymeric substances from Thiobacillus ferrooxidans for bioleaching. Appl Environ Microbiol 64:2743–2747

    PubMed  CAS  Google Scholar 

  • Gorby YA, Yanina S, McLean JS, Rosso KM, Moyles D, Dohnalkova A, Beveridge TJ, Chang IS, Kim BH, Kim KS, Culley DE, Reed SB, Romine MF, Saffarini DA, Hill EA, Shi L, Elias DA, Kennedy DW, Pinchuk G, Watanabe K, Ishii S, Logan B, Nealson KH, Fredrickson JK (2006) Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc Natl Acad Sci 103:11358–11363

    Article  PubMed  CAS  Google Scholar 

  • Grogan DW (1996) Organization and interactions of cell envelope proteins of the extreme thermoacidophile Sulfolobus acidocaldarius. Can J Microbiol 42:1163–1171

    Article  CAS  Google Scholar 

  • Gruber K, Sleytr UB (1988) Localized insertion of new S-layer during growth of Bacillus stearothermophilus strain PV72. EMBO Workshop on crystalline bacterial surface layers. Springer, Heidelberg

    Google Scholar 

  • Hallberg KB, González-Toril E, und Johnson DB (2010) Acidithiobacillus ferrivorans, sp. nov.; facultatively anaerobic, psychrotolerant iron- and sulfur-oxidizing acidophiles isolated from metal mine-impacted environments. Extremophiles 14:9–19

    Article  PubMed  CAS  Google Scholar 

  • Harneit K, Göksel A, Kock D, Klock JH, Gehrke T, Sand W (2006) Adhesion to metal sulfide surfaces by cells of Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans and Leptospirillum ferrooxidans. Hydrometallurgy 83:245–254

    Article  CAS  Google Scholar 

  • Hofte M (1993) Classes of microbial siderophores. In: Barton LL, Hemming BC (eds) Iron Chelation in Plants and Soil Microorganisms. Academic Press, San Diego, p 4

    Google Scholar 

  • Hohenberg H, Mannweiler K, Müller M (1994) High-pressure freezing of cell suspensions in cellulose capillary tubes. J Microsc 175:34–43

    Article  PubMed  CAS  Google Scholar 

  • Huber H (1987) Isolierung, Charakterisierung und taxonomische Einordnung neuer mesophiler, metallmetabolisierender Bakterien. PhD thesis. University of Regensburg, Germany

  • Huber G, Huber H, Stetter KO (1986) Isolation and characterization of new metal-mobilizing bacteria. Biotechnol Bioeng Symp 16:239–251

    CAS  Google Scholar 

  • Jiang C, Liu Y, Liu Y, Guo X, Liu SJ (2009) Isolation and characterization of ferrous- and sulfur-oxidizing bacteria from Tengchong solfataric region, China. J Environ Sci (China) 21:1247–1252

    Article  CAS  Google Scholar 

  • Jones RA, Koval SF, Nesbitt HW (2003) Surface alteration of arsenopyrite (FeAsS) by Thiobacillus ferrooxidans. Geochim Cosmochim Acta 67:955–965

    Article  CAS  Google Scholar 

  • Junglas B, Briegel A, Burghardt T, Walther P, Wirth R, Huber H, Rachel R (2008) Ignicoccus hospitalis and Nanoarchaeum equitans: ultrastructure, cell-cell interaction, and 3D reconstruction from serial sections of freeze-substituted cell and by electron cryotomography. Arch Microbiol 190:395–408

    Article  PubMed  CAS  Google Scholar 

  • Kärcher U, Schröder H, Haslinger E, Allmaier G, Schreiner R, Wieland F, Haselbeck A, und König H (1993) Primary structure of the heterosaccharide of the surface glycoprotein of Methanothermus fervidus. J Biol Chem 268:26821–26826

    PubMed  Google Scholar 

  • Kelly DW, Wood AP (2000) Reclassification of some species of Thiobacillus to the newly designated genera Acidithiobacillus gen. nov., Halothiobacillus gen. nov. and Thermithiobacillus gen. nov. IJSEM 50:511–516

    PubMed  Google Scholar 

  • König H, Rachel R, Claus H (2007) Proteinaceous surface layers of Archaea: ultrastructure and biochemistry. In: Cavicchioli R (ed) Archaea: molecular and cell biology. American Society of Microbiology Press, Washington, DC, USA, pp 315–340

    Google Scholar 

  • Larsson L, Olsson G, Holst O, Karlsson HT (1993) Oxidation of pyrite by Acidianus brierleyi: Importance of close contact between the pyrite and the microorganisms. Biotechnol Lett 15:99–104

    Article  CAS  Google Scholar 

  • Lazar P (2004) Optimierung der Gewinnung von extrazellulären polymeren Substanzen von Laugungsbakterien. Diploma thesis. University of Hamburg, Germany

  • Lee S-W, Sabet M, Um H-S, Yang J, Kim HC, Zhu W (2006) Identification and characterization of the genes encoding a unique surface (S-) layer of Tannerela forsythia. Gene 371:102–111

    Article  PubMed  CAS  Google Scholar 

  • Liu H-L, Chen B-Y, Lan Y-W, Cheng Y-C (2003) SEM and AFM images of pyrite surfaces avter bioleaching by the indigenous Thiobacillus thiooxidans. Appl Microbiol Biotechnol 62:414–420

    Article  PubMed  CAS  Google Scholar 

  • Ludwig W, Strunk O, Klugbauer N, Weizenegger M, Neumaier J, Bachleitner M, Schleifer KH (1998) Bacterial phylogeny based on comparative sequence analysis. Electrophoresis 19:554–568

    Article  PubMed  CAS  Google Scholar 

  • Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yedhukumar, Buchner A, Lai T, Steppi S, Jobb G, Förster W, Brettske I, Gerber S, Ginhart AW, Gross O, Grumann S, Hermann S, Jost R, König A, Liss T, Lüßmann R, May M, Nonhoff B, Reichel B, Strehlow R, Stamatakis A, Stuckmann N, Vilbig A, Lenke M, Ludwig T, Bode A, Schleifer K-H (2004) ARB: a software environment for sequence data. Nucl Acids Res 32:1363–1371

    Article  PubMed  CAS  Google Scholar 

  • Merroun ML, Raff J, Rossberg A, Hennig C, Reich T, Selenska-Pobell S (2005) Complexation of uranium by cells and S-layer sheets of Bacillus sphaericus JG-A12. Appl Environ Microbiol 71:5532–5543

    Article  PubMed  CAS  Google Scholar 

  • Mescher MF, Strominger JL (1976) Structural (shape-maintaining) role of the cell surface glycoprotein of Halobacterium salinarium. PNAS 73:2687–2691

    Article  PubMed  CAS  Google Scholar 

  • Mesnage S, Fontaine T, Mignot T, Delepierre M, Mock M, und Fouet A (2000) Bacterial SLH domain proteins are non-covalently anchored to the cell surface via a conserved mechanism involving wall polysaccharide pyruvylation. EMBO J 19:4473–4484

    Article  PubMed  CAS  Google Scholar 

  • Messner P (2004) Prokaryotic glycoproteins: Unexplored but Important. J Bacteriol 186:2517–2519

    Article  PubMed  CAS  Google Scholar 

  • Messner P, Schäffer C (2000) Surface layer glycoproteins of Bacteria and Archaea. In: Doyle RJ (ed) Glycomicrobiology. Kluwer Academic Publisher, New York, pp 93–125

    Google Scholar 

  • Messner P, Schäffer C (2003) Prokaryotic glycoproteins. Prog Chem Org Nat Prod 85:51–124

    CAS  Google Scholar 

  • Messner P, Pum D, Sára M, Stetter KO, Sleytr UB (1986) Ultrastructure of the cell envelope of the archaebacteria Thermoproteus tenax and Thermoproteus neutrophilus. J Bacteriol 166:1046–1054

    PubMed  CAS  Google Scholar 

  • Mjoli N, Kulpa CF (1988) Identification of a unique outer membrane protein required for iron oxidation in Thiobacillus ferrooxidans. In: Norris PR, Kelly DP (eds) Biohydrometallurgy—Proceedings of the International Symposium Warwick 1987: pp 89–103. Science and Technology Letters. Antony Rowe Ltd., Kew, Great Britain

  • Peters J, Nitsch M, Kühlmorgen B, Golbik R, Lupas A, Kellermann J, Engelhardt H, Pfander J-P, Müller S, Goldie K, Engel A, Stetter K-O, Baumeister W (1995) Tetrabrachion: a filamentous archaebacterial surface protein assembly of unusual structure and extreme stability. J Mol Biol 245:385–401

    Article  PubMed  CAS  Google Scholar 

  • Pley U, Schipka J, Gambacorta A, Jannasch HW, Fricke H, Rachel R, Stetter KO (1991) Pyrodictium abyssi sp. nov. represents a novel heterotrophic marine archaeal hyperthermophile growing at 110°C. System Appl Microbiol 14:245–253

    Google Scholar 

  • Pum D, Messner P, Sleytr UB (1991) Role of the S-layer in morphogenesis and cell division of the archaebacterium Methanocorpusculum sinense. J Bacteriol 173:6865–6873

    PubMed  CAS  Google Scholar 

  • Rachel R (1999) Fine structure of hyperthermophilic prokaryotes. In: Seckbach J (ed) Enigmatic microorganisms and life in extreme environments. Kluwer Academic Publisher, The Netherlands, pp 277–289

    Google Scholar 

  • Rachel R, Engel AM, Huber R, Stetter KO, Baumeister W (1990) A porin-type protein is the main constituent of the cell envelope of the ancestral eubacterium Thermotoga maritima. FEBS Lett 262:64–68

    Article  CAS  Google Scholar 

  • Rachel R, Pum D, Šmarda J, Šmajs D, Komrska J, Krzyzánek V, Rieger G, Stetter KO (1997) II Fine structure of S-layers. FEMS Microbiol Rev 20:13–23

    Article  CAS  Google Scholar 

  • Rachel R, Wyschkony I, Riehl S, Huber H (2002) The ultrastructure of Ignicoccus: evidence for a novel outer membrane and for intracellular vesicle budding in an archaeon. Archaea 1:9–18

    Article  PubMed  CAS  Google Scholar 

  • Rachel R, Meyer C, Klingl A, Gürster S, Heimerl T, Wasserburger N, Burghardt T, Küper U, Bellack A, Schopf S, Wirth R, Huber H, Wanner G (2010) Analysis of the ultrastructure of archaea by electron microscopy. Method Cell Biol 96:47–69

    Article  Google Scholar 

  • Reguera G, McCarthy KD, Mehta T, Nicoll JS, Tuominen MT, Lovley DR (2005) Extracellular electron transfer via microbial nanowires. Nature 435:1098–1101

    Article  PubMed  CAS  Google Scholar 

  • Reynolds ES (1963) Use of lead citrate as a stain in electron microscopy. Cell Biol 17:208–213

    Article  CAS  Google Scholar 

  • Ristl R, Steiner K, Zarschler K, Zayni S, Messner P, Schäffer C (2011) The S-layer glycome—adding to the sugar coat of bacteria. Int J Microbiol 2011

  • Rohwerder T, Gehrke T, Kinzler K, Sand W (2003) Bioleaching review part A: progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation. Appl Microbiol Biotechnol 63:239–248

    Article  PubMed  CAS  Google Scholar 

  • Rose AL, Waite TD (2003) Kinetics of iron complexation by dissolved natural organic matter in coastal waters. Mar Chem 84:85–103

    Article  CAS  Google Scholar 

  • Sand W, Gehrke T (2006) Extracellular polymeric substances mediate bioleaching/biocorrosion via interfacial processes involving iron(III) ions and acidophilic bacteria. Res Microbiol 157:49–56

    Article  PubMed  CAS  Google Scholar 

  • Sandercock LE, MacLeod AM, Ong E, Warren RAJ (1994) Non-S-layer glycoproteins in eubacteria. FEMS Microbiol Lett 118:1–8

    Article  PubMed  CAS  Google Scholar 

  • Sára M, Sleytr UB (2000) S-Layer Proteins. J Bacteriol 182:859–868

    Article  PubMed  Google Scholar 

  • Saxton WO (1996) Semper: distortion compensation, selective averaging, 3-D reconstruction and transfer function correction in a highly programmable system. J Struct Biol 116:230–236

    Article  PubMed  CAS  Google Scholar 

  • Schäffer C, Messner P (2001) Glycobiology of surface layer proteins. Biochimie 83:591–599

    Article  PubMed  Google Scholar 

  • Schäffer C, Wugeditsch T, Kählig H, Scheberl A, Zayni S, Messner P (2002) The surface layer (s-layer) glycoprotein of Geobacillus stearothermophilus NRS 2004/3a. J Biol Chem 277:6230–6239

    Article  PubMed  Google Scholar 

  • Schägger H, von Jagow G (1987) Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166:223–231

    Article  Google Scholar 

  • Schirmer T (1998) General and specific porins from bacterial outer membranes. J Struct Biol 121:101–109

    Article  PubMed  CAS  Google Scholar 

  • Schuster KU (2003) Der Surface Layer von “Nanoarchaeum equitans”. Diploma thesis. University of Regensburg, Germany

  • Segrest JP, Jackson RL (1972) Molecular weight determination of glycoproteins by polyacrylamide gel electrophoresis in sodium dodecyl sulphate. Method Enzymol 28:54–63

    Article  Google Scholar 

  • Shears GE, Ledward DA, Neale RJ (1987) Iron complexation to carboxyl groups in a bovine serum albumin digest. Int J Food Sci Tech 22:265–272

    Article  CAS  Google Scholar 

  • Silverman MP, Lundgren DG (1959) Studies on the chemoautotrophic iron bacterium Ferrobacillus ferrooxidans. J Bacteriol 78:326–331

    PubMed  CAS  Google Scholar 

  • Sleytr UB (1997) I Basic and applied S-layer research. FEMS Microbiol Rev 20:5–12

    Article  CAS  Google Scholar 

  • Sleytr UB, Messner P, Pum D, Sára M (1988) Crystalline bacterial cell surface layers. EMBO Workshop on crystalline bacterial surface layers. Springer, Heidelberg

    Google Scholar 

  • Stieglmeier M, Wirth R, Kminek G, Moissl-Eichinger C (2009) Cultivation of Anaerobic and Facultatively Anaerobic Bacteria from Spacecraft-associated Clean Rooms. Appl Environ Microbiol 75:3484–3491

    Article  CAS  Google Scholar 

  • Studer D, Graber W, Al-Moudi A, Eggli P (2001) A new approach for cryofixation by high-pressure freezing. J Microsc 203:285–294

    Article  PubMed  CAS  Google Scholar 

  • Valdés J, Pedroso I, Quatrini R, Dodson RJ, Tettelin H, Blake II R, Eisen JA, Holmes DS (2008) Acidithiobacillus ferrooxidans metabolism: from genome sequence to industrial applications. BMC Genomics 9:1–24

    Article  Google Scholar 

  • Veith A, Klingl A, Zolghadr B, Lauber K, Mentele R, Lottspeich F, Rachel R, Albers S-V, Kletzin A (2009) Acidianus, Sulfolobus and Metallosphaera surface layers: structure, composition and gene expression. Mol Microbiol 73:58–72

    Article  PubMed  CAS  Google Scholar 

  • Walther P, Ziegler A (2002) Freeze substitution of high-pressure frozen samples: the visibility of biological membranes is improved when the substitution medium contains water. J Microsc 208:3–10

    Article  PubMed  CAS  Google Scholar 

  • Wieland F, Lechner J, Sumper M (1982) The cell wall glycoprotein of Halobacteria: structural, functional and biosynthetic aspects. Zbl Bakt Hyg I Abt Orig C 3:161–170

    CAS  Google Scholar 

  • Wieland F, Heitzer R, Schaefer W (1983) Asparaginylglucose: novel type of carbohydrate linkage. PNAS 80:5470–5474

    Article  PubMed  CAS  Google Scholar 

  • Wildhaber I, Baumeister W (1987) The cell envelope of Thermoproteus tenax: three-dimensional structure of the surface layer and its role in shape maintenance. EMBO J 6:1475–1480

    PubMed  CAS  Google Scholar 

  • Witter AE, Hutchins DA, Butler A, Luther III GW (2000) Determination of conditional stability constants and kinetic constants for strong model Fe-binding ligands in seawater. Mar Chem 69:1–17

    Article  CAS  Google Scholar 

  • Wolf YI, Rogozin IB, Grishin NV, Koonin EV (2002) Genome trees and the tree of life. Trends Genet 18:472–479

    Article  PubMed  CAS  Google Scholar 

  • Wu D, Hugenholtz P, Mavromatis K, Pukall R, Dalin E, Ivanova NN, Kunin V, Goodwin L, Wu M, Tindall BJ, Hooper SD, Pati A, Lykidis A, Spring S, Anderson IJ, D`haeseleer P, Zemla A, Singer M, Lapidus A, Nolan M, Copeland A, Han C, Chen F, Cheng JF, Lucas S, Kerfeld C, Lang E, Gronow S, Chain P, Bruce D, Rubin EM, Kyrpides NC, Klenk HP, Eisen JA (2009) A phylogeny-driven genomic encyclopaedia of Bacteria and Archaea. Nature 462:1056–1060

    Article  PubMed  CAS  Google Scholar 

  • Zellner G, Stackebrandt E, Kneifel H, Messner P, Sleytr UB, Conway de Macario E, Zabel H-P, Stetter KO, Winter J (1989) Isolation and characterization of a thermophilic, sulfate reducing archaebacterium, Archaeoglobus fulgidus strain Z. System Appl Microbiol 11:151–160

    CAS  Google Scholar 

Download references

Acknowledgments

We wish to thank H. Op den Camp, V. Menath, C. Neuner, B. Salecker, and A. Zenker for technical assistance and contribution to this paper. We also wish to thank R. Witzgall and G. Schmalz for support and A. Probst and D. Näther for carefully reading the manuscript. A.K., H.H., G.S., M.T., and R.R. were supported by a grant of the DFG (TH 422/9-1/2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reinhard Rachel.

Additional information

Communicated by Erko Stackebrandt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1218 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klingl, A., Moissl-Eichinger, C., Wanner, G. et al. Analysis of the surface proteins of Acidithiobacillus ferrooxidans strain SP5/1 and the new, pyrite-oxidizing Acidithiobacillus isolate HV2/2, and their possible involvement in pyrite oxidation. Arch Microbiol 193, 867–882 (2011). https://doi.org/10.1007/s00203-011-0720-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-011-0720-y

Keywords

Navigation