Skip to main content
Log in

Metagenomic analysis of the 1-aminocyclopropane-1-carboxylate deaminase gene (acdS) operon of an uncultured bacterial endophyte colonizing Solanum tuberosum L

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Deamination of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) is a key plant-beneficial trait found in many plant growth-promoting bacteria. In this study, we analysed ACC deaminase genes (acdS) of bacterial endophytes colonizing field-grown potato plants. PCR analysis revealed the presence of two types of acdS genes, the dominant one showing high homology to an acdS gene derived from Pseudomonas fluorescens. Construction, functional screening and sequence analysis of metagenomic libraries revealed clones containing the acdS gene identified in the PCR library. Sequence analysis of one metagenomic clone identified the entire acdS operon of an uncultivated endophyte and revealed that the acdS gene is coupled upstream with an acdR transcriptional regulator gene as previously found in P. putida strain UW4 (Grichko and Glick 2000). However, in-silico analysis of 195 fully sequenced, acdS-containing bacterial genomes revealed that the majority of strains, including numerous strains belonging to the genus Pseudomonas, do not contain an acdR regulatory gene in the vicinity of the acdS gene or elsewhere in the genome. The acdR +acdS + operon was exclusively found in several Alpha- and Betaproteobacteria most prominently in the genus Burkholderia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Belimov AA, Safronova VI, Sergeyeva TA, Egorova TN, Matveyeva VA, Tsyganov VE, Borisov AY, Tikhonovich IA, Kluge C, Preisfeld A, Dietz KJ, Stepanok VV (2001) Characterization of plant growth promoting rhizobacteria isolated from polluted soils and containing 1-aminocyclopropane-1-carboxylate deaminase. Can J Microbiol 47:242–252

    Article  Google Scholar 

  • Belimov AA, Hontzeas N, Safronova VI, Demchinskaya SV, Piluzza G, Bullitta S, Glick BR (2005) Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.). Soil Biol Biochem 37:241–250

    Article  CAS  Google Scholar 

  • Berg G, Krechel A, Ditz M, Faupel A, Ulrich A, Hallmann J (2005) Endophytic and ectophytic potato-associated bacterial communities differ in structure and antagonistic function against plant pathogenic fungi. FEMS Microbiol Ecol 51:215–229

    Article  PubMed  CAS  Google Scholar 

  • Blaha D, Prigent-Combaret C, Mirza MS, Möenne-Loccoz Y (2006) Phylogeny of the 1-aminocyclopropane 1-carboxylic acid deaminase encoding gene acdS in phytobeneficial and pathogenic Proteobacteria in relation with strain biogeography. FEMS Microbiol Ecol 56:455–470

    Article  PubMed  CAS  Google Scholar 

  • Brown CM, Dilworth MJ (1975) Ammonia assimilation by Rhizobium cultures and bacteroids. J Gen Microbiol 86:39–48

    PubMed  CAS  Google Scholar 

  • Bulgari D, Casati P, Brusetti L, Quaglino F, Brasca M, Daffonchio D, Bianco PA (2009) Endophytic bacterial diversity in grapevine (Vitis vinifera L.) leaves described by 16S rRNA gene sequence analysis and length heterogeneity-PCR. J Microbiol 47:393–401

    Article  PubMed  CAS  Google Scholar 

  • Burd GI, Dixon DG, Glick BR (1998) A plant growth-promoting bacterium that decreases nickel toxicity in plant seedlings. Appl Environ Microbiol 64:3663–3668

    PubMed  CAS  Google Scholar 

  • Chelius MK, Triplett EW (2001) The diversity of archaea and bacteria in association with the roots of Zea mays L. Microb Ecol 41:252–263

    PubMed  CAS  Google Scholar 

  • Compant S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo- and endosphere of plants: Their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678

    Article  CAS  Google Scholar 

  • Daniel R (2005) The metagenomics of soil. Nature Rev 3:470–478

    Article  CAS  Google Scholar 

  • Edwards U, Rogall T, Blocker H, Emde M, Bottger EC (1989) Isolation and direct complete nucleotide determination of entire genes. Nucleic Acids Res 17:7843–7853

    Article  PubMed  CAS  Google Scholar 

  • Farajzadeh D, Aliasgharzad N, Sokhandan Bashir N, Yakhchali B (2010) Cloning and characterization of a plasmid encoded ACC deaminase from an indigenous Pseudomonas fluorescens FY32. Curr Microbiol 61:37–43

    Article  PubMed  CAS  Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117

    Article  CAS  Google Scholar 

  • Glick BR (2005) Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiol Lett 252:1–7

    Article  Google Scholar 

  • Glick BR, Todorovic B, Czarny J, Cheng Z, Duan J, McConkey B (2007) Promotion of plant growth by bacterial ACC deaminase. Crit Rev Plant Sci 26:227–242

    Article  CAS  Google Scholar 

  • Grichko VP, Glick BR (2000) Identification of DNA sequences that regulate the expression of the Enterobacter cloacae UW4 1-aminocycloprpane-1-carboxylic acid deaminase gene. Can J Microbiol 46:1159–1165

    PubMed  CAS  Google Scholar 

  • Grichko VP, Glick BR (2001) Amelioration of flooding stress by ACC-deaminase-containing plant growth-promoting bacteria. Plant Physiol Biochem 39:11–17

    Article  CAS  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Handelsman J (2004) Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev 68:669–685

    Article  PubMed  CAS  Google Scholar 

  • Holden N, Pritchard L, Toth I (2009) Colonization outwith the colon: plants as an alternative environmental reservoir for human pathogenic enterobacteria. FEMS Microbiol Rev 33:689–703

    Article  PubMed  CAS  Google Scholar 

  • Hontzeas NA, Richardson O, Belimov A, Safronova V, Abu-Omar MM, Glick BR (2005) Evidence for horizontal transfer of 1-aminocyclopropane-1-carboxylate deaminase genes. Appl Environ Microbiol 71:7556–7558

    Article  PubMed  CAS  Google Scholar 

  • Hontzeas N, Hontzeas CE, Glick BR (2006) Reaction mechanisms of the bacterial enzyme 1-aminocyclopropane-1-carboxylate deaminase. Biotechnol Adv 24:420–426

    Article  PubMed  CAS  Google Scholar 

  • Idris R, Trifonova R, Puschenreiter M, Wenzel WW, Sessitsch A (2004) Bacterial communities associated with flowering plants of the Ni-hyperaccumulator Thlaspi goesingense. Appl Environ Microbiol 70:2667–2677

    Article  PubMed  CAS  Google Scholar 

  • Kimura N (2006) Metagenomics: access to unculturable microbes in the environment. Microbes Environ 21:201–215

    Article  Google Scholar 

  • Kowalchuk GA, Speksnijder AGCL, Zhang K, Goodman RM, van Veen JA (2007) Finding the needles in the metagenome haystack. Microb Ecol 53:475–485

    Article  PubMed  Google Scholar 

  • Li J, Glick BR (2001) Transcriptional regulation of the Enterobacter cloacae UW4 1-aminocyclopropane-1-carboxylate (ACC) deaminase gene (acdS). Can J Microbiol 47:359–367

    PubMed  CAS  Google Scholar 

  • Ma W, Guinel FC, Glick BR (2003) The Rhizobium leguminosarum bv. viciae ACC deaminase protein promotes the nodulation of pea plants. Appl Environ Microbiol 69:4396–4402

    Article  PubMed  CAS  Google Scholar 

  • Manter DK, Delgado JA, Holm DG, Stong RA (2010) Pyrosequencing reveals a highly diverse and cultivar-specific bacterial endophyte community in potato roots. Microb Ecol 60:157–166

    Article  PubMed  Google Scholar 

  • Massol-Deya AA, Odelson DA, Hickey RF, Tiedje JM (1995) Bacterial community fingerprinting of amplified 16S and 16-23S ribosomal gene sequences and restriction endonuclease analysis (ARDRA). In: Molecular microbial ecology manual, Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 3.3.2.1.1-8

  • Mayak S, Tirosh T, Glick BR (2004a) Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Sci 166:525–530

    Article  CAS  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004b) Plant growth-promoting bacteria that confer resistance in tomato to salt stress. Plant Physiol Biochem 42:565–572

    Article  PubMed  CAS  Google Scholar 

  • Onofre-Lemus J, Hernandez-Lucas I, Girard L, Caballero-Mellado J (2009) ACC (1-aminocyclopropane-1-carboxylate) deaminase activity, a widespread trait in Burkholderia species, and its growth-promoting effect on tomato plants. Appl Environ Microbiol 75:6581–6590

    Article  PubMed  CAS  Google Scholar 

  • Rasche F, Velvis H, Zachow C, Berg G, van Elsas JD, Sessitsch A (2006a) Impact of transgenic potatoes expressing antibacterial agents on bacterial endophytes is comparable to effects of wild type potatoes and changing environmental conditions. J Appl Ecol 43:555–566

    Article  CAS  Google Scholar 

  • Rasche F, Trondl R, Naglreiter C, Reichenauer TG, Sessitsch A (2006b) Chilling and cultivar type affect the diversity of bacterial endophytes colonizing sweet pepper (Capsicum anuum L.). Can J Microbiol 52:1036–1045

    Article  PubMed  CAS  Google Scholar 

  • Rasche F, Lueders T, Schloter M, Schaefer S, Buegger F, Gattinger A, Hood-Nowotny RC, Sessitsch A (2009) DNA-based stable isotope probing enables the identification of active bacterial endophytes in potatoes. New Phytol 181:802–807

    Article  PubMed  CAS  Google Scholar 

  • Reiter B, Sessitsch A (2006) The bacterial microflora in association with the wildflower Crocus albiflorus. Can J Microbiol 52:1–10

    Article  Google Scholar 

  • Reiter B, Pfeifer U, Schwab H, Sessitsch A (2002) Response of endophytic bacterial communities in potato plants to infection with Erwinia carotovora subsp. atroseptica. Appl Environ Microbiol 68:2261–2268

    Article  PubMed  CAS  Google Scholar 

  • Riesenfeld CS, Schloss PD, Handelsman J (2004) METAGENOMICS: genomic analysis of microbial communities. Annu Rev Genet 38:525–552

    Article  PubMed  CAS  Google Scholar 

  • Rosenblueth M, Martínez-Romero E (2006) Bacterial endophytes and their interaction with hosts. Mol Plant Microbe Interact 19:827–837

    Article  PubMed  CAS  Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467

    Article  PubMed  CAS  Google Scholar 

  • Sessitsch A, Reiter B, Pfeifer U, Wilhelm E (2002) Cultivation-independent population analysis of bacterial endophytes in three potato varieties based on eubacterial and Actinomycetes-specific PCR of 16S rRNA genes. FEMS Microbiol Ecol 39:23–32

    Article  PubMed  CAS  Google Scholar 

  • Sessitsch A, Reiter B, Berg G (2004) Endophytic bacterial communities of field-grown potato plants and their plant-growth-promoting and antagonistic abilities. Can J Microbiol 50:239–249

    Article  PubMed  CAS  Google Scholar 

  • Studier FW, Rosenberg AH, Dunn JJ, Dubendorff JW (1990) Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol 185:60–89

    Article  PubMed  CAS  Google Scholar 

  • Sturz AV, Christie BR, Matheson BG (1997) Associations of bacterial endophyte populations from red clover and potato crops with potential for beneficial allelopathy. Can J Microbiol 44:162–167

    Article  Google Scholar 

  • Thaw P, Sedelnikova SE, Muranova T, Wiese S, Ayora S, Alonso JC, Brinkman AB, Akerboom J, van der Oost J, Rafferty JB (2006) Structural insight into gene transcriptional regulation and effector binding by the Lrp/AsnC family. Nucleic Acids Res 34:1439–1449

    Article  PubMed  CAS  Google Scholar 

  • Thomas P, Soly TA (2009) Endophytic bacteria associated with growing shoot tips of banana (Musa sp.) cv. Grand Naine and the affinity of endophytes to the host. Microb Ecol 58:952–964

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Todorovic B, Glick BR (2008) The interconversion of ACC deaminase and d-cysteine desulfhydrase by directed mutagenesis. Planta 229:193–205

    Article  PubMed  CAS  Google Scholar 

  • Wang C, Knill E, Glick BR, Defago G (2000) Effect of transferring 1-aminocyclopropane-1-carboxylic (ACC) deaminase genes into Pseudomonas fluorescens strain CHAO and its gacA derivative CHA96 on their growth-promoting and disease-suppressing capacities. Can J Microbiol 46:898–907

    PubMed  CAS  Google Scholar 

  • Wilson D (1995) Endophyte–the evolution of a term, and clarification of its use and definition. Oikos 73:274–276

    Article  Google Scholar 

Download references

Acknowledgments

Funding for this study was provided by the Austrian Science Fund (FWF, project number P16580-B14). Partly, the research leading to these results has received funding from the European Commission’s Seventh Framework Programme FP7/2007-2013 under grant agreement No27552.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela Sessitsch.

Additional information

Communicated by Ursula Priefer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 301 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nikolic, B., Schwab, H. & Sessitsch, A. Metagenomic analysis of the 1-aminocyclopropane-1-carboxylate deaminase gene (acdS) operon of an uncultured bacterial endophyte colonizing Solanum tuberosum L. Arch Microbiol 193, 665–676 (2011). https://doi.org/10.1007/s00203-011-0703-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-011-0703-z

Keywords

Navigation