Skip to main content
Log in

Role of Nitrosomonas europaea NitABC iron transporter in the uptake of Fe3+-siderophore complexes

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Nitrosomonas europaea has a single three-gene operon (nitABC) encoding an iron ABC transporter system (NitABC). Phylogenetic analysis clustered the subunit NitB with Fe3+-ABC transporter permease components from other organisms. The N.europaea strain deficient in nitB (nitB::kan) grew well in either Fe-replete or Fe-limited media and in Fe-limited medium containing the catecholate-type siderophore, enterobactin or the citrate-based dihydroxamate-type siderophore, aerobactin. However, the nitB::kan mutant strain was unable to grow in Fe-limited media containing either the hydroxamate-type siderophores, ferrioxamine and ferrichrome or the mixed-chelating type siderophore, pyoverdine. Exposure of N. europaea cells to a ferrichrome analog coupled to the fluorescent moiety naphthalic diimide (Fhu-NI) led to increase in fluorescence in the wild type but not in nitB::kan mutant cells. Spheroplasts prepared from N.europaea wild type exposed to Fhu-NI analog retained the fluorescence, while spheroplasts of the nitB::kan mutant were not fluorescent. NitABC transports intact Fe3+-ferrichrome complex into the cytoplasm and is an atypical ABC type iron transporter for Fe3+ bound to ferrioxamine, ferrichrome or pyoverdine siderophores into the cytoplasm. The mechanisms to transport iron in either the Fe3+ or Fe2+ forms or Fe3+ associated with enterobactin or aerobactin siderophores into the cell across the cytoplasmic membrane are as yet undetermined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adhikari P, Berish SA, Nowalk AJ, Veraldi KL, Morse SA, Mietzner TA (1996) The fbpABC locus of Neisseria gonorrhoeae functions in the periplasm-to-cytosol transport of iron. J Bacteriol 178:2145–2149

    CAS  PubMed  Google Scholar 

  • Anderson DS, Adhikari P, Weaver KD, Crumbliss AL, Mietzner TA (2007) The Haemophilus influenzae hFbpABC Fe3+ transporter: analysis of the membrane permease and development of a gallium-based screen for mutants. J Bacteriol 189:5130–5141

    Article  CAS  PubMed  Google Scholar 

  • Andrews SC, Robinson AK, Rodriguez-Quinones F (2003) Bacterial iron homeostasis. FEMS Microbiol Rev 27:215–237

    Article  CAS  PubMed  Google Scholar 

  • Bendtsen JD, Nielsen H, von Heijne G, Brunak S (2004) Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340:783–795

    Article  PubMed  Google Scholar 

  • Chain P et al (2003) Complete genome sequence of the ammonia-oxidizing bacterium and obligate chemolithoautotroph Nitrosomonas europaea. J Bacteriol 185:2759–2773

    Article  CAS  PubMed  Google Scholar 

  • Ensign SA, Hyman MR, Arp DJ (1993) In vitro activation of ammonia monooxygenase from Nitrosomonas europaea by copper. J Bacteriol 175:1971–1980

    CAS  PubMed  Google Scholar 

  • Escolar L, Perez-Martin J, de Lorenzo V (1999) Opening the iron box: transcriptional metalloregulation by the Fur protein. J Bacteriol 181:6223–6229

    CAS  PubMed  Google Scholar 

  • Gong S, Bearden SW, Geoffroy VA, Fetherston JD, Perry RD (2001) Characterization of the Yersinia pestis Yfu ABC inorganic iron transport system. Infect Immun 69:2829–2837

    Article  CAS  PubMed  Google Scholar 

  • Guerinot ML (1994) Microbial iron transport. Annu Rev Microbiol 48:743–772

    Article  CAS  PubMed  Google Scholar 

  • Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580

    Article  CAS  PubMed  Google Scholar 

  • Hommes NG, Sayavedra-Soto LA, Arp DJ (1996) Mutagenesis of hydroxylamine oxidoreductase in Nitrosomonas europaea by transformation and recombination. J Bacteriol 178:3710–3714

    CAS  PubMed  Google Scholar 

  • Hooper AB, Erickson RH, Terry KR (1972) Electron transport systems of Nitrosomonas: isolation of a membrane-envelope fraction. J Bacteriol 110:430–438

    CAS  PubMed  Google Scholar 

  • Klotz MG et al (2006) Complete genome sequence of the marine, chemolithoautotrophic, ammonia-oxidizing bacterium Nitrosococcus oceani ATCC 19707. Appl Environ Microbiol 72:6299–6315

    Article  CAS  PubMed  Google Scholar 

  • Köster W (1991) Iron(III) hydroxamate transport across the cytoplasmic membrane of Escherichia coli. Biol Met 4:23–32

    Article  PubMed  Google Scholar 

  • Köster W (2001) ABC transporter-mediated uptake of iron, siderophores, heme and vitamin B12. Res Microbiol 152:291–301

    Article  PubMed  Google Scholar 

  • Köster W (2005) Cytoplasmic membrane iron permease systems in the bacterial cell envelope. Front Biosci 10:462–477

    Article  PubMed  Google Scholar 

  • Kovach ME et al (1995) Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166:175–176

    Article  CAS  PubMed  Google Scholar 

  • Meijler MM, Arad-Yellin R, Cabantchik ZI, Shanzer A (2002) Synthesis and evaluation of iron chelators with masked hydrophilic moieties. J Am Chem Soc 124:12666–12667

    Article  CAS  PubMed  Google Scholar 

  • Morrissey JA, Cockayne A, Hill PJ, Williams P (2000) Molecular cloning and analysis of a putative siderophore ABC transporter from Staphylococcus aureus. Infect Immun 68:6281–6288

    Article  CAS  PubMed  Google Scholar 

  • Norton JM et al (2008) Complete genome sequence of Nitrosospira multiformis, an ammonia-oxidizing bacterium from the soil environment. Appl Environ Microbiol 74:3559–3572

    Article  CAS  PubMed  Google Scholar 

  • Pressler U, Staudenmaier H, Zimmermann L, Braun V (1988) Genetics of the iron dicitrate transport system of Escherichia coli. J Bacteriol 170:2716–2724

    CAS  PubMed  Google Scholar 

  • Quatrini R, Jedlicki E, Holmes DS (2005) Genomic insights into the iron uptake mechanisms of the biomining microorganism Acidithiobacillus ferrooxidans. J Ind Microbiol Biotechnol 32:606–614

    Article  CAS  PubMed  Google Scholar 

  • Quatrini R, Lefimil C, Veloso FA, Pedroso I, Holmes DS, Jedlicki E (2007) Bioinformatic prediction and experimental verification of Fur-regulated genes in the extreme acidophile Acidithiobacillus ferrooxidans. Nucleic Acids Res 35:2153–2166

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Schryvers AB, Stojiljkovic I (1999) Iron acquisition systems in the pathogenic Neisseria. Mol Microbiol 32:1117–1123

    Article  CAS  PubMed  Google Scholar 

  • Shea CM, McIntosh MA (1991) Nucleotide sequence and genetic organization of the ferric enterobactin transport system: homology to other periplasmic binding protein-dependent systems in Escherichia coli. Mol Microbiol 5:1415–1428

    Article  CAS  PubMed  Google Scholar 

  • Stein LY, Arp DJ (1998) Loss of ammonia monooxygenase activity in Nitrosomonas europaea upon exposure to nitrite. Appl Environ Microbiol 64:4098–4102

    CAS  PubMed  Google Scholar 

  • Stein LY et al (2007) Whole-genome analysis of the ammonia-oxidizing bacterium, Nitrosomonas eutropha C91: implications for niche adaptation. Environ Microbiol 9:2993–3007

    Article  CAS  PubMed  Google Scholar 

  • Stephens DL, Choe MD, Earhart CF (1995) Escherichia coli periplasmic protein FepB binds ferrienterobactin. Microbiology 141(Pt 7):1647–1654

    Article  CAS  PubMed  Google Scholar 

  • Suzuki I, Kwok SC (1969) Oxidation of ammonia by spheroplasts of Nitrosomonas europaea. J Bacteriol 99:897–898

    CAS  PubMed  Google Scholar 

  • Wei X, Sayavedra-Soto LA, Arp DJ (2004) The transcription of the cbb operon in Nitrosomonas europaea. Microbiology 150:1869–1879

    Article  CAS  PubMed  Google Scholar 

  • Wei X, Vajrala N, Hauser L, Sayavedra-Soto LA, Arp DJ (2006) Iron nutrition and physiological responses to iron stress in Nitrosomonas europaea. Arch Microbiol 186:107–118

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We sincerely thank Dr. Joseph Englander (Weizmann Institute of Science, Rehovot, Israel) for kindly providing the fluorescently labeled ferrichrome analog and for his valuable suggestions. We thank Dr. Conrad Schoch (GenBank, National Center for Biotechnology Information (NCBI), Bethesda, MD) for help with phylogenetic analysis. This research was supported by grant DE-FG03-01ER63149 to D. J. A. and the Oregon Agricultural Experiment Station.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel J. Arp.

Additional information

Communicated by Erko Stackebrandt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 233 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vajrala, N., Sayavedra-Soto, L.A., Bottomley, P.J. et al. Role of Nitrosomonas europaea NitABC iron transporter in the uptake of Fe3+-siderophore complexes. Arch Microbiol 192, 899–908 (2010). https://doi.org/10.1007/s00203-010-0620-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-010-0620-6

Keywords

Navigation