Skip to main content

Advertisement

Log in

Environmental and genetic factors that contribute to Escherichia coli K-12 biofilm formation

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Biofilms are communities of bacteria whose formation on surfaces requires a large portion of the bacteria’s transcriptional network. To identify environmental conditions and transcriptional regulators that contribute to sensing these conditions, we used a high-throughput approach to monitor biofilm biomass produced by an isogenic set of Escherichia coli K-12 strains grown under combinations of environmental conditions. Of the environmental combinations, growth in tryptic soy broth at 37°C supported the most biofilm production. To analyze the complex relationships between the diverse cell-surface organelles, transcriptional regulators, and metabolic enzymes represented by the tested mutant set, we used a novel vector-item pattern-mining algorithm. The algorithm related biofilm amounts to the functional annotations of each mutated protein. The pattern with the best statistical significance was the gene ontology ‘pyruvate catabolic process,’ which is associated with enzymes of acetate metabolism. Phenotype microarray experiments illustrated that carbon sources that are metabolized to acetyl-coenzyme A, acetyl phosphate, and acetate are particularly supportive of biofilm formation. Scanning electron microscopy revealed structural differences between mutants that lack acetate metabolism enzymes and their parent and confirmed the quantitative differences. We conclude that acetate metabolism functions as a metabolic sensor, transmitting changes in environmental conditions to biofilm biomass and structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Barker CS, Prüß BM, Matsumura P (2004) Increased motility of Escherichia coli by insertion sequence element integration into the regulatory region of the flhD operon. J Bacteriol 186:7529–7537

    Article  PubMed  CAS  Google Scholar 

  • Beloin C, Valle J, Latour-Lambert P, Faure P, Kzreminski M, Balestrino D, Haagensen JA, Molin S, Prensier G, Arbeille B, Ghigo JM (2004) Global impact of mature biofilm lifestyle on Escherichia coli K-12 gene expression. Mol Microbiol 51:659–674

    Article  PubMed  CAS  Google Scholar 

  • Bertin P, Terao E, Lee EH, Lejeune P, Colson C, Danchin A, Collatz E (1994) The H-NS protein is involved in the biogenesis of flagella in Escherichia coli. J Bacteriol 176:5537–5540

    PubMed  CAS  Google Scholar 

  • Bertin P, Hommais F, Krin E, Soutourina O, Tendeng C, Derzelle S, Danchin A (2001) H-NS and H-NS-like proteins in Gram-negative bacteria and their multiple role in the regulation of bacterial metabolism. Biochimie 83:235–241

    Article  PubMed  CAS  Google Scholar 

  • Besemann C, Denton A, Carr NJ, Prüß BM (2006) BISON: Bio-Interface for the Semi-global analysis Of Network patterns. Source Code Biol Med 1:8

    Article  PubMed  CAS  Google Scholar 

  • Bochner BR (2009) Global phenotypic characterization of bacteria. FEMS Microbiol Rev 33:191–205

    Article  PubMed  CAS  Google Scholar 

  • Bochner BR, Gadzinski P, Panomitros E (2001) Phenotype microarrays for high-throughput phenotypic testing and assay of gene function. Genome Res 11:1246–1255

    Article  PubMed  CAS  Google Scholar 

  • Bochner BR, Giovannetti L, Viti C (2008) Important discoveries from analysing bacterial phenotypes. Mol Microbiol 70:274–280

    Article  PubMed  CAS  Google Scholar 

  • Brown TD, Jones-Mortimer MC, Kornberg HL (1977) The enzymic interconversion of acetate and acetyl-coenzyme A in Escherichia coli. J Gen Microbiol 102:327–336

    PubMed  CAS  Google Scholar 

  • Chavez RG, Alvarez AF, Romeo T, Georgillis D (2010) The physiological stimulus for the BarA sensor kinase. J Bacteriol 192:2009–2012

    Article  PubMed  CAS  Google Scholar 

  • Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322

    Article  PubMed  CAS  Google Scholar 

  • Davies DG, Parsek MR, Pearson JP, Iglewski BH, Costerton JW, Greenberg EP (1998) The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280:295–298

    Article  PubMed  CAS  Google Scholar 

  • Denton AM, Wu J (2009) Data mining of vector-item patterns using neighborhood histograms. Knowl Informat Syst 21:173–199

    Article  Google Scholar 

  • Denton AM, Wu J, Townsend MK, Sule P, Prüß BM (2008) Relating gene expression data on two-component systems to functional annotations in Escherichia coli. BMC Bioinformatics 9:294

    Article  PubMed  CAS  Google Scholar 

  • Domka J, Lee J, Bansal T, Wood TK (2007) Temporal gene-expression in Escherichia coli K-12 biofilms. Environ Microbiol 9:332–346

    Article  PubMed  CAS  Google Scholar 

  • Fredericks CE, Shibata S, Aizawa SI, Reimann SA, Wolfe AJ (2006) Acetyl phosphate-sensitive regulation of flagellar biogenesis and capsular biosynthesis depends on the Rcs phosphorelay. Mol Microbiol 61:734–747

    Article  PubMed  CAS  Google Scholar 

  • Gao R, Stock AM (2009) Biological insights from structures of two-component proteins. Annu Rev Microbiol 63:133–154

    Article  PubMed  CAS  Google Scholar 

  • Golby P, Davies S, Kelly DJ, Guest JR, Andrews SC (1999) Identification and characterization of a two-component sensor-kinase and response-regulator system (DcuS-DcuR) controlling gene expression in response to C4-dicarboxylates in Escherichia coli. J Bacteriol 181:1238–1248

    PubMed  CAS  Google Scholar 

  • Goller CC, Romeo T (2008) Environmental influences on biofilm development. Curr Top Microbiol Immunol 322:37–66

    Article  PubMed  CAS  Google Scholar 

  • Hagiwara D, Sugiura M, Oshima T, Mori H, Aiba H, Yamashino T, Mizuno T (2003) Genome-wide analyses revealing a signaling network of the RcsC-YojN-RcsB phosphorelay system in Escherichia coli. J Bacteriol 185:5735–5746

    Article  PubMed  CAS  Google Scholar 

  • Heydorn A, Nielsen AT, Hentzer M, Sternberg C, Givskov M, Ersboll BK, Molin S (2000) Quantification of biofilm structures by the novel computer program COMSTAT. Microbiology 146:2395–2407

    PubMed  CAS  Google Scholar 

  • Heydorn A, Ersboll B, Kato J, Hentzer M, Parsek MR, Tolker-Nielsen T, Givskov M, Molin S (2002) Statistical analysis of Pseudomonas aeruginosa biofilm development: impact of mutations in genes involved in twitching motility, cell-to-cell signaling, and stationary-phase sigma factor expression. Appl Environ Microbiol 68:2008–2017

    Article  PubMed  CAS  Google Scholar 

  • Hommais F, Krin E, Laurent-Winter C, Soutourina O, Malpertuy A, Le Caer JP, Danchin A, Bertin P (2001) Large-scale monitoring of pleiotropic regulation of gene expression by the prokaryotic nucleoid-associated protein, H-NS. Mol Microbiol 40:20–36

    Article  PubMed  CAS  Google Scholar 

  • Hu LI, Lima BP, Wolfe AF (2010) Bacterial protein acetylation: the dawning of a new age. Mol Microbiol. doi:10.111/j.1365-2958.2010.07204.x

  • Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30

    Article  PubMed  CAS  Google Scholar 

  • Kumari S, Beatty CM, Browning DF, Busby SJ, Simel EJ, Hovel-Miner G, Wolfe AJ (2000) Regulation of acetyl coenzyme A synthetase in Escherichia coli. J Bacteriol 182:4173–4179

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Matsumura P (1994) The FlhD/FlhC complex, a transcriptional activator of the Escherichia coli flagellar class II operons. J Bacteriol 176:7345–7351

    PubMed  CAS  Google Scholar 

  • Monds RD, O’Toole GA (2009) The developmental model of microbial biofilms: ten years of a paradigm up for review. Trends Microbiol 17:73–87

    Article  PubMed  CAS  Google Scholar 

  • Myers RH, Montgomery DC (1995) Response surface methodology. Wiley, New York

    Google Scholar 

  • O’Toole GA, Pratt LA, Watnick PI, Newman DK, Weaver VB, Kolter R (1999) Genetic approaches to study of biofilms. Methods Enzymol 310:91–109

    Article  PubMed  Google Scholar 

  • Oshima T, Aiba H, Masuda Y, Kanaya S, Sugiura M, Wanner BL, Mori H, Mizuno T (2002) Transcriptome analysis of all two-component regulatory system mutants of Escherichia coli K-12. Mol Microbiol 46:281–291

    Article  PubMed  CAS  Google Scholar 

  • Pratt LA, Kolter R (1998) Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Mol Microbiol 30:285–293

    Article  PubMed  CAS  Google Scholar 

  • Prüß BM, Besemann C, Denton A, Wolfe AJ (2006) A complex transcription network controls the early stages of biofilm development by Escherichia coli. J Bacteriol 188:3731–3739

    Article  PubMed  CAS  Google Scholar 

  • Ren D, Bedzyk LA, Thomas SM, Ye RW, Wood TK (2004) Gene expression in Escherichia coli biofilms. Appl Microbiol Biotechnol 64:515–524

    Article  PubMed  CAS  Google Scholar 

  • Sauer K, Camper AK, Ehrlich GD, Costerton JW, Davies DG (2002) Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J Bacteriol 184:1140–1154

    Article  PubMed  CAS  Google Scholar 

  • Schembri MA, Kjaergaard K, Klemm P (2003) Global gene expression in Escherichia coli biofilms. Mol Microbiol 48:253–267

    Article  PubMed  CAS  Google Scholar 

  • Shamir R, Maron-Katz A, Tanay A, Linhart C, Steinfeld I, Sharan R, Shiloh Y, Elkon R (2005) EXPANDER-an integrative program suite for microarray data analysis. BMC Bioinform 6:232

    Article  CAS  Google Scholar 

  • Silhavy TJ, Berman ML, Enquist LW (1984) Experiments with gene fusions. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Stafslien SJ, Bahr JA, Feser JM, Weisz JC, Chisholm BJ, Ready TE, Boudjouk P (2006) Combinatorial materials research applied to the development of new surface coatings I: a multiwell plate screening method for the high-throughput assessment of bacterial biofilm retention on surfaces. J Comb Chem 8:156–162

    Article  PubMed  CAS  Google Scholar 

  • Stafslien S, Daniels J, Chisholm B, Christianson D (2007) Combinatorial materials research applied to the development of new surface coatings III. Utilisation of a high-throughput multiwell plate screening method to rapidly assess bacterial biofilm retention on antifouling surfaces. Biofouling 23:37–44

    Article  PubMed  CAS  Google Scholar 

  • Stewart PS, Peyton BM, Drury WJ, Murga R (1993) Quantitative observations of heterogeneities in Pseudomonas aeruginosa biofilms. Appl Environ Microbiol 59:327–329

    PubMed  CAS  Google Scholar 

  • Sule P, Wadhawan T, Carr NJ, Horne SM, Wolfe AJ, Prüß BM (2009) A combination of assays reveals biomass differences in biofilms formed by Escherichia coli mutants. Lett Appl Microbiol 49:299–304

    Article  PubMed  CAS  Google Scholar 

  • Sung BH, Lee CH, Yu BJ, Lee JH, Lee JY, Kim MS, Blattner FR, Kim SC (2006) Development of a biofilm production-deficient Escherichia coli strain as a host for biotechnological applications. Appl Environ Microbiol 72:3336–3342

    Article  PubMed  CAS  Google Scholar 

  • Wang Q, Zhang Y, Yang C, Xiong H, Lin Y, Yao J, Li H, Xie L, Zhao W, Yao Y, Ning ZB, Zeng R, Xiong Y, Guan KL, Zhao S, Zhao GP (2010) Acetylation of metabolic enzymes coordinates carbon source utilization and metabolic flux. Science 19:1004–1007

    Article  CAS  Google Scholar 

  • Wolfe AJ (2005a) Acetyl phosphate is a global signal. In: Prüß BM (ed) Global regulatory networks in enteric bacteria. Research Signpost, Trivandrum, pp 31–44

    Google Scholar 

  • Wolfe AJ (2005b) The acetate switch. Microbiol Mol Biol Rev 69:12–50

    Article  PubMed  CAS  Google Scholar 

  • Wolfe AJ (2010) Physiologically relevant small phosphodonors link metabolism to signal transduction. Curr Opin Microbiol 13:204–209

    Article  PubMed  CAS  Google Scholar 

  • Wolfe AJ, Berg HC (1989) Migration of bacteria in semisolid agar. Proc Natl Acad Sci USA 86:6973–6977

    Article  PubMed  CAS  Google Scholar 

  • Wolfe AJ, Visick KL (2010) The second messenger cyclic di-GMP. American Society for Microbiology, Washington, DC

    Google Scholar 

  • Wolfe AJ, Chang DE, Walker JD, Seitz-Partridge JE, Vidaurri MD, Lange CF, Prüß BM, Henk MC, Larkin JC, Conway T (2003) Evidence that acetyl phosphate functions as a global signal during biofilm development. Mol Microbiol 48:977–988

    Article  PubMed  CAS  Google Scholar 

  • Wood TK (2009) Insights on Escherichia coli biofilm formation and inhibition from whole-transcriptome profiling. Environ Microbiol 11:1–15

    Article  PubMed  CAS  Google Scholar 

  • Yu BJ, Kim JA, Moon JH, Ryu SE, Pan JG (2008) The diversity of lysine-acetylated proteins in Escherichia coli. J Microbiol Biotechnol 18:1529–1536

    PubMed  CAS  Google Scholar 

  • Zhang J, Sprung R, Pei J, Tan X, Kim S, Zhu H, Liu CF, Grishin NV, Zhao Y (2009) Lysine acetylation is a highly abundant and evolutionarily conserved modification in Escherichia coli. Mol Cell Proteomics 8:215–225

    PubMed  CAS  Google Scholar 

  • Zheng D, Constantinidou C, Hobman JL, Minchin SD (2004) Identification of the CRP regulon using in vitro and in vivo transcriptional profiling. Nucleic Acids Res 32:5874–5893

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Coli Genetic Stock Center (Yale University, New Haven, CT) for strains and Dr. Philip Matsumura (University of Illinois at Chicago, Chicago IL) for plasmid pXL27. Dr. Jayma Moore (NDSU) performed the scanning electron microscopy at the Electron Microscopy Center. In the VMS Department, KV was funded by the North Dakota Agricultural Experiment Station. BMP, SK, and PS were funded by ADVANCE/FORWARD through grant HRD-0811239 from the National Science Foundation. Equipment was purchased from a seed grant from ND EPSCoR through grant EPS-0447679 from the NSF. In addition, BMP and PS were funded by an earmark grant on Agrosecurity: Disease Surveillance and Public Health provided through the Unites States Department of Agriculture-APHIS. In the Computer Science Department, AD and JW were funded by grant IDM-0415190 from the NSF. JW was also supported by the Center for Nanoscale Science and Engineering. At CNSE, SJS and DC were funded by grant N00014-06-1-0952 from the Office of Naval Research. At Loyola University, AJW was funded by grant GM066130 from the National Institute of General Medical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Birgit M. Prüß.

Additional information

Communicated by Sebastian Suerbaum.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prüß, B.M., Verma, K., Samanta, P. et al. Environmental and genetic factors that contribute to Escherichia coli K-12 biofilm formation. Arch Microbiol 192, 715–728 (2010). https://doi.org/10.1007/s00203-010-0599-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-010-0599-z

Keywords

Navigation