Skip to main content

Environmental Influences on Biofilm Development

  • Chapter
Bacterial Biofilms

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 322))

Bacterial biofilms are found under diverse environmental conditions, from sheltered and specialized environments found within mammalian hosts to the extremes of biological survival. The process of forming a biofilm and the eventual return of cells to the planktonic state involve the coordination of vast amounts of genetic information. Nevertheless, the prevailing evidence suggests that the overall progression of this cycle within a given species or strain of bacteria responds to environmental conditions via a finite number of key regulatory factors and pathways, which affect enzymatic and structural elements that are needed for biofilm formation and dispersal. Among the conditions that affect biofilm development are temperature, pH, O 2levels, hydrodynamics, osmolarity, the presence of specific ions, nutrients, and factors derived from the biotic environment. The integration of these influences ultimately determines the pattern of behavior of a given bacterium with respect to biofilm development. This chapter will present examples of how environmental conditions affect biofilm development, most of which come from studies of species that have mammalian hosts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aberg A, Shingler V, Balsalobre C (2006) (p) ppGpp regulates type 1 fimbriation of Escherichia coli by modulating the expression of the site-specific recombinase FimB. Mol Microbiol 60:1520–1533

    PubMed  Google Scholar 

  • Agladze K, Jackson D, Romeo T (2003) Periodicity of cell attachment patterns during Escherichia coli biofilm development. J Bacteriol 185:5632–5638

    PubMed  CAS  Google Scholar 

  • Agladze K, Wang X, Romeo T (2005) Spatial periodicity of Escherichia coli K-12 biofilm microstructure initiates during a reversible, polar attachment phase of development and requires the polysaccharide adhesin PGA. J Bacteriol 187:8237–8246

    PubMed  CAS  Google Scholar 

  • Anderson BN, Ding AM, Nilsson LM, Kusuma K, Tchesnokova V, Vogel V, Sokurenko EV, Thomas WE (2007) Weak rolling adhesion enhances bacterial surface colonization. J Bacteriol 189:1794–1802

    PubMed  CAS  Google Scholar 

  • Anderson GG, Palermo JJ, Schilling JD, Roth R, Heuser J, Hultgren SJ (2003) Intracellular bacterial biofilm-like pods in urinary tract infections. Science 301:105–107

    PubMed  CAS  Google Scholar 

  • Babitzke P, Romeo T (2007) CsrB ncRNA family: sequestration of RNA-binding regulatory proteins. Curr Opin Microbiol 10:156–163

    PubMed  CAS  Google Scholar 

  • Barnhart MM, Chapman MR (2006) Curli biogenesis and function. Annu Rev Microbiol 60:131–147

    PubMed  CAS  Google Scholar 

  • Barraud N, Hassett DJ, Hwang SH, Rice SA, Kjelleberg S, Webb JS (2006) Involvement of nitric oxide in biofilm dispersal of Pseudomonas aeruginosa. J Bacteriol 188:7344–7353

    PubMed  CAS  Google Scholar 

  • Bassler BL, Losick R (2006) Bacterially speaking. Cell 125: 237–246

    PubMed  CAS  Google Scholar 

  • Battin TJ, Sloan WT, Kjelleberg S, Daims H, Head IM, Curtis TP, Eberl L (2007) Microbial landscapes: new paths to biofilm research. Nat Rev Microbiol 5:76–81

    PubMed  CAS  Google Scholar 

  • Beloin C, Valle J, Latour-Lambert P, Faure P, Kzreminski M, Balestrino D, Haagensen JA, Molin S, Prensier G, Arbeille B, Ghigo JM (2004) Global impact of mature biofilm lifestyle on Escherichia coli K-12 gene expression. Mol Microbiol 51(3):659–674

    PubMed  CAS  Google Scholar 

  • Blumer C, Kleefeld A, Lehnen D, Heintz M, Dobrindt U, Nagy G, Michaelis K, Emody L, Polen T, Rachel R, Wendisch VF, Unden G (2005) Regulation of type 1 fimbriae synthesis and biofilm formation by the transcriptional regulator LrhA of Escherichia coli. Microbiology 151: 3287–3298

    PubMed  CAS  Google Scholar 

  • Bobrov AG, Kirillina O, Perry RD (2005) The phosphodiesterase activity of the HmsP EAL domain is required for negative regulation of biofilm formation in Yersinia pestis. FEMS Microbiol Lett 247:123–130

    PubMed  CAS  Google Scholar 

  • Boles BR, Thoendel M, Singh PK (2005) Rhamnolipids mediate detachment of Pseudomonas aeruginosa from biofilms. Mol Microbiol 57:1210–1223

    PubMed  CAS  Google Scholar 

  • Bottari B, Ercolini D, Gatti M, Neviani E (2006) Application of FISH technology for microbiological analysis: current state and prospects. Appl Microbiol Biotechnol 73(3):485–494

    PubMed  CAS  Google Scholar 

  • Bougdour A, Lelong C, Geiselmann J (2004) Crl, a low temperature-induced protein in Escherichia coli that binds directly to the stationary phase s subunit of RNA polymerase. J Biol Chem 279: 19540–19550

    PubMed  CAS  Google Scholar 

  • Boulanger A, Francez-Charlot A, Conter A, Castanie-Cornet MP, Cam K, Gutierrez C (2005) Multistress regulation in Escherichia coli: expression of osmB involves two independent promoters responding either to σs or to the RcsCDB His-Asp phosphorelay. J Bacteriol 187:3282–3286

    PubMed  CAS  Google Scholar 

  • Branda SS, Gonzalez-Pastor JE, Ben-Yehuda S, Losick R, Kolter R (2001) Fruiting body formation by Bacillus subtilis. Proc Natl Acad Sci U S A 98:11621–11626

    PubMed  CAS  Google Scholar 

  • Branda SS, Vik A, Friedman L, Kolter R (2005) Biofilms: the matrix revisited. Trends Microbiol 13:20–26

    PubMed  CAS  Google Scholar 

  • Cai SJ, Inouye M (2002) EnvZ-OmpR interaction and osmoregulation in Escherichia coli. J Biol Chem 277: 24155–24161

    PubMed  CAS  Google Scholar 

  • Caiazza NC, O’Toole GA (2004) SadB is required for the transition from reversible to irreversible attachment during biofilm formation by Pseudomonas aeruginosa PA14. J Bacteriol 186:4476–4485

    PubMed  CAS  Google Scholar 

  • Castonguay MH, van der Schaaf S, Koester W, Krooneman J, van der Meer W, Harmsen H, Landini P (2006) Biofilm formation by Escherichia coli is stimulated by synergistic interactions and co-adhesion mechanisms with adherence-proficient bacteria. Res Microbiol 157:471–478

    PubMed  CAS  Google Scholar 

  • Cerca N, Pier GB, Vilanova M, Oliveira R, Azeredo J (2005) Quantitative analysis of adhesion and biofilm formation on hydrophilic and hydrophobic surfaces of clinical isolates of Staphylococcus epidermidis. Res Microbiol 156:506–514

    PubMed  CAS  Google Scholar 

  • Chavant P, Martinie B, Meylheuc T, Bellon-Fontaine MN, Hebraud M (2002)Listeria monocytogenes LO28: surface physicochemical properties and ability to form biofilms at different temperatures and growth phases. Appl Environ Microbiol 68:728–737

    PubMed  CAS  Google Scholar 

  • Christensen BB, Haagensen JAJ, Heydorn A, Molin S (2002) Metabolic commensalism and competition in a two-species microbial consortium. Appl Environ Microbiol 68:2495–2502

    PubMed  CAS  Google Scholar 

  • Conlon KM, Humphreys H, O’Gara JP (2002)icaR encodes a transcriptional repressor involved in environmental regulation of ica operon expression and biofilm formation in Staphylococcus epidermidis. J Bacteriol 184:4400–4408

    PubMed  CAS  Google Scholar 

  • Conlon KM, Humphreys H, O’Gara JP (2004) Inactivations of rsbU and sarA by IS256 represent novel mechanisms of biofilm phenotypic variation in Staphylococcus epidermidis. J Bacteriol 186:6208–6219

    PubMed  CAS  Google Scholar 

  • Cramton SE, Ulrich M, Gotz F, Doring G (2001) Anaerobic conditions induce expression of polysaccharide intercellular adhesin in Staphylococcus aureus and Staphylococcus epidermidis. Infect Immun 69:4079–4085

    PubMed  CAS  Google Scholar 

  • Crossman L, Dow JM (2004) Biofilm formation and dispersal in Xanthomonas campestris. Microbes Infect 6:623–629

    PubMed  CAS  Google Scholar 

  • Danese PN, Silhavy TJ (1998) CpxP, a stress-combative member of the Cpx regulon. J Bacteriol 180(4):831–839

    PubMed  CAS  Google Scholar 

  • Davey ME, Caiazza NC, O’Toole GA (2003) Rhamnolipid surfactant production affects biofilm architecture in Pseudomonas aeruginosa PAO1. J Bacteriol 185:1027–1036

    PubMed  CAS  Google Scholar 

  • Dobinsky S, Kiel K, Rohde H, Bartscht K, Knobloch JKM, Horstkotte MA, Mack D (2003) Glucose-related dissociation between icaADBC transcription and biofilm expression by Staphylococcus epidermidis: evidence for an additional factor required for polysaccharide intercellular adhesin synthesis. J Bacteriol 185: 2879–2886

    PubMed  CAS  Google Scholar 

  • Donlan RM (2002) Biofilms: microbial life on surfaces. Emerg Infect Dis 8:881–890

    PubMed  Google Scholar 

  • Donlan RM, Costerton JW (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15:167–193

    PubMed  CAS  Google Scholar 

  • Dorel C, Vidal O, Prigent-Combaret C, Vallet I, Lejeune P (1999) Involvement of the Cpx signal transduction pathway of E. coli in biofilm formation. FEMS Microbiol Lett 178:169–175

    PubMed  CAS  Google Scholar 

  • Dow JM, Crossman L, Findlay K, He YQ, Feng JX, Tang JL (2003) Biofilm dispersal in Xanthomonas campestris is controlled by cell-cell signaling and is required for full virulence to plants. Proc Natl Acad Sci U S A 100:10995–11000

    PubMed  CAS  Google Scholar 

  • Dunne WM Jr (2002) Bacterial adhesion: seen any good biofilms lately? Clin Microbiol Rev 15:155–166

    PubMed  CAS  Google Scholar 

  • Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA (2005) Diversity of the human intestinal microbial flora. Science 308:1635–1638

    PubMed  Google Scholar 

  • Francez-Charlot A, Laugel B, Van Gemert A, Dubarry N, Wiorowski F, Castanie-Cornet MP, Gutierrez C, Cam K (2003) RcsCDB His-Asp phosphorelay system negatively regulates the flhDC operon in Escherichia coli. Mol Microbiol 49:823–832

    PubMed  CAS  Google Scholar 

  • Fredericks CE, Shibata S, Aizawa SI, Reimann SA, Wolfe AJ (2006) Acetyl phosphate-sensitive regulation of flagellar biogenesis and capsular biosynthesis depends on the Rcs phosphorelay. Mol Microbiol 61:734–747

    PubMed  CAS  Google Scholar 

  • Friedman L, Kolter R (2004) Two genetic loci produce distinct carbohydrate-rich structural components of the Pseudomonas aeruginosa biofilm matrix. J Bacteriol 186:4457–4465

    PubMed  CAS  Google Scholar 

  • Gally DL, Bogan JA, Eisenstein BI, Blomfield IC (1993) Environmental regulation of the fim switch controlling type 1 fimbrial phase variation in Escherichia coli K-12: effects of temperature and media. J Bacteriol 175:6186–6193

    PubMed  CAS  Google Scholar 

  • Geesey GG (2001) Bacterial behavior at surfaces. Curr Opin Microbiol 4:296–300

    PubMed  CAS  Google Scholar 

  • Gerke C, Kraft A, Sussmuth R, Schweitzer O, Gotz F (1998) Characterization of the N-acetylglucosaminyltransferase activity involved in the biosynthesis of the Staphylococcus epidermidis polysaccharide intercellular adhesin. J Biol Chem 273(29):18586–18593

    PubMed  CAS  Google Scholar 

  • Gerstel U, Park C, Romling U (2003) Complex regulation of csgD promoter activity by global regulatory proteins. Mol Microbiol 49:639–654

    PubMed  CAS  Google Scholar 

  • Ghigo JM (2001) Natural conjugative plasmids induce bacterial biofilm development. Nature 412:442–445

    PubMed  CAS  Google Scholar 

  • Gjermansen M, Ragas P, Sternberg C, Molin S, Tolker-Nielsen T (2005) Characterization of starvation-induced dispersion in Pseudomonas putida biofilms. Environ Microbiol 7:894–906

    PubMed  CAS  Google Scholar 

  • Gjermansen M, Ragas P, Tolker-Nielsen T (2006) Proteins with GGDEF and EAL domains regulate Pseudomonas putida biofilm formation and dispersal. FEMS Microbiol Lett 265(2):215–224

    PubMed  CAS  Google Scholar 

  • Goller C, Wang X, Itoh Y, Romeo T (2006) The cation-responsive protein NhaR of Escherichia coli activates pgaABCD transcription, required for production of the biofilm adhesin poly-β-1, 6-N-acetyl-D-glucosamine. J Bacteriol 188:8022–8032

    PubMed  CAS  Google Scholar 

  • Gudapaty S, Suzuki K, Wang X, Babitzke P, Romeo T (2001) Regulatory interactions of Csr components: the RNA binding protein CsrA activates csrB transcription in Escherichia coli. J Bacteriol 183:6017–6027

    PubMed  CAS  Google Scholar 

  • Hall-Stoodley L, Stoodley P (2005) Biofilm formation and dispersal and the transmission of human pathogens. Trends Microbiol 13:7–10

    PubMed  CAS  Google Scholar 

  • Hammar M, Arnqvist A, Bian, Z, Olsen A, Normark S (1995) Expression of two csg operons is required for production of fibronectin- and congo red-binding curli polymers in Escherichia coli K-12. Mol Microbiol 18:661–670

    PubMed  CAS  Google Scholar 

  • Hammer BK, Bassler BL (2003) Quorum sensing controls biofilm formation in Vibrio cholerae. Mol Microbiol 50:101–104

    PubMed  CAS  Google Scholar 

  • Hanna A, Berg M, Stout V, Razatos A (2003) Role of capsular colanic acid in adhesion of uropathogenic Escherichia coli. Appl Environ Microbiol 69(8):4474–4481

    PubMed  CAS  Google Scholar 

  • Hansen SK, Rainey PB, Haagensen JA, Molin S (2007) Evolution of species interactions in a biofilm community. Nature 445:533–536

    PubMed  CAS  Google Scholar 

  • Heilmann C, Gerke C, Perdreau-Remington F, Götz F (1996a) Characterization of Tn 917 insertion mutants of Staphylococcus epidermidis affected in biofilm formation. Infect Immun 64:277–282

    PubMed  CAS  Google Scholar 

  • Heilmann C, Schweitzer O, Gerke C, Vanittanakom N, Mack D, Gotz F (1996b) Molecular basis of intercellular adhesion in the biofilm-forming Staphylococcus epidermidis. Mol Microbiol 20(5):1083–1091

    PubMed  CAS  Google Scholar 

  • Hengge-Aronis R (2002) Signal transduction and regulatory mechanisms involved in control of the ss (RpoS) subunit of RNA polymerase. Microbiol Mol Biol Rev 66:373–395

    PubMed  CAS  Google Scholar 

  • Hinsa SM, O’Toole GA (2006) Biofilm formation by Pseudomonas fluorescens WCS365: a role for LapD. Microbiology 152:1375–1383

    PubMed  CAS  Google Scholar 

  • Hinsa SM, Espinosa-Urgel M, Ramos JL, O’Toole GA (2003) Transition from reversible to irreversible attachment during biofilm formation by Pseudomonas fluorescens WCS365 requires an ABC transporter and a large secreted protein. Mol Microbiol 49:905–918

    PubMed  CAS  Google Scholar 

  • Hung DL, Raivio TL, Jones CH, Silhavy TJ, Hultgren SJ (2001) Cpx signaling pathway monitors biogenesis and affects assembly and expression of P. pili. EMBO J 20:1508–1518

    PubMed  CAS  Google Scholar 

  • Isberg RR, Barnes P (2002) Dancing with the host: flow-dependent bacterial adhesion. Cell 110:1–4

    PubMed  CAS  Google Scholar 

  • Itoh Y, Wang X, Hinnebusch BJ, Preston JF 3rd, Romeo T (2005) Depolymerization of beta-1, 6-N-acetyl-D-glucosamine disrupts the integrity of diverse bacterial biofilms. J Bacteriol 187:382–387

    PubMed  CAS  Google Scholar 

  • Jackson DW, Suzuki K, Oakford L, Simecka JW, Hart ME, Romeo T (2002a) Biofilm formation and dispersal under the influence of the global regulator CsrA of Escherichia coli. J Bacteriol 184:290–301

    PubMed  CAS  Google Scholar 

  • Jackson DW, Simecka JW, Romeo T (2002b) Catabolite repression of Escherichia coli biofilm formation. J Bacteriol 184:3406–3410

    PubMed  CAS  Google Scholar 

  • Jackson KD, Starkey M, Kremer S, Parsek MR, Wozniak DJ (2004) Identification of psl, a locus encoding a potential exopolysaccharide that is essential for Pseudomonas aeruginosa PAO1 biofilm formation. J Bacteriol 186:4466–4475

    PubMed  CAS  Google Scholar 

  • James GA, Korber DR, Caldwell DE, Costerton JW (1995) Digital image analysis of growth and starvation responses of a surface-colonizing Acinetobacter sp. J Bacteriol 177:907–915

    PubMed  CAS  Google Scholar 

  • Jenal U, Malone J (2006) Mechanisms of cyclic-di-GMP signaling in bacteria. Annu Rev Genet 40:385–407

    PubMed  CAS  Google Scholar 

  • Jubelin G, Vianney A, Beloin C, Ghigo JM, Lazzaroni JC, Lejeune P, Dorel C (2005) CpxR/OmpR interplay regulates curli gene expression in response to osmolarity in Escherichia coli. J Bacteriol 187:2038–2049

    PubMed  CAS  Google Scholar 

  • Kader A, Simm R, Gerstel U, Morr M, Romling U (2006) Hierarchical involvement of various GGDEF domain proteins in rdar morphotype development of Salmonella enterica serovar Typhimurium. Mol Microbiol 60:602–616

    PubMed  CAS  Google Scholar 

  • Kaplan JB, Ragunath C, Ramasubbu N, Fine DH (2003) Detachment of Actinobacillus actinomycetemcomitans biofilm cells by an endogenous beta-hexosaminidase activity. J Bacteriol 185:4693–4698

    PubMed  CAS  Google Scholar 

  • Kaplan JB, Velliyagounder K, Ragunath C, Rohde H, Mack D, Knobloch JK, Ramasubbu N (2004) Genes involved in the synthesis and degradation of matrix polysaccharide in Actinobacillus actinomycetemcomitans and Actinobacillus pleuropneumoniae biofilms. J Bacteriol 186:8213–8220

    PubMed  CAS  Google Scholar 

  • Kikuchi T, Mizunoe Y, Takade A, Naito S, Yoshida S (2005) Curli fibers are required for development of biofilm architecture in Escherichia coli K-12 and enhance bacterial adherence to human uroepithelial cells. Microbiol Immunol 49:875–884

    PubMed  CAS  Google Scholar 

  • Kirisits MJ, Parsek MR (2006) Does Pseudomonas aeruginosa use intercellular signalling to build biofilm communities? Cell Microbiol 8:1841–1849

    PubMed  CAS  Google Scholar 

  • Klemm P (1986) Two regulatory fim genes, fimB and fimE, control the phase variation of type 1 fimbriae in Escherichia coli. EMBO J 5:1389–1393

    PubMed  CAS  Google Scholar 

  • Klemm P, Hjerrild L, Gjermansen M, Schembri MA (2004) Structure-function analysis of the self-recognizing Antigen 43 autotransporter protein from Escherichia coli. Mol Microbiol 51:283–296

    PubMed  CAS  Google Scholar 

  • Klemm P, Vejborg RM, Sherlock O (2006) Self-associating autotransporters, SAATs: functional and structural similarities. Int J Med Microbiol 296:187–195

    PubMed  CAS  Google Scholar 

  • Kolenbrander PE (2000) Oral microbial communities: biofilms, interactions, and genetic systems. Annu Rev Microbiol 54:413–437

    PubMed  CAS  Google Scholar 

  • Kong KF, Vuong C, Otto M (2006) Staphylococcus quorum sensing in biofilm formation and infection. Int J Med Microbiol 296:133–139

    PubMed  CAS  Google Scholar 

  • Kroes I, Lepp PW, Relman DA (1999) Bacterial diversity within the human subgingival crevice. Proc Natl Acad Sci U S A 96:14547–14552

    PubMed  CAS  Google Scholar 

  • Lasa I (2006) Towards the identification of the common features of bacterial biofilm development. Int Microbiol 9:21–28

    PubMed  CAS  Google Scholar 

  • Lenz DH, Miller MB, Zhu J, Kulkarni RV, Bassler BL (2005) CsrA and three redundant small RNAs regulate quorum sensing in Vibrio cholerae. Mol Microbiol 58:1186–1202

    PubMed  CAS  Google Scholar 

  • Liu MY, Gui G, Wei B, Preston JF 3rd, Oakford L, Yuksel U, Giedroc DP, Romeo T (1997) The RNA molecule CsrB binds to the global regulatory protein CsrA and antagonizes its activity in Escherichia coli. J Biol Chem 272:17502–17510

    PubMed  CAS  Google Scholar 

  • Lowe MA, Holt SC, Eisenstein BI (1987) Immunoelectron microscopic analysis of elongation of type 1 fimbriae in Escherichia coli. J Bacteriol 169:157–163

    PubMed  CAS  Google Scholar 

  • Macnab RM (2003) How bacteria assemble flagella. Annu Rev Microbiol 57:77–100

    PubMed  CAS  Google Scholar 

  • Mack D, Davies AP, Harris LG, Rohde H, Horstkotte MA, Knobloch JK (2007) Microbial interactions in Staphylococcus epidermidis biofilms. Anal Bioanal Chem 387:399–408

    PubMed  CAS  Google Scholar 

  • Maini PK, Baker RE, Chuong CM (2006) Developmental biology. The Turing model comes of molecular age. Science 314:1397–1398

    PubMed  CAS  Google Scholar 

  • Maira-Litran T, Kropec A, Abeygunawardana C, Joyce J, Mark Iii G, Goldmann DA, Pier GB (2002) Immunochemical properties of the Staphylococcal poly-N-acetylglucosamine surface polysaccharide. Infect Immun 70:4433–4440

    PubMed  CAS  Google Scholar 

  • Majdalani N, Gottesman S (2005) The Rcs phosphorelay: a complex signal transduction system. Annu Rev Microbiol 59:379–405

    PubMed  CAS  Google Scholar 

  • Maurer JJ, Brown TP, Steffens WL, Thayer SG (1998) The occurrence of ambient temperature-regulated adhesins, curli, and the temperature-sensitive hemagglutinin tsh among avian Escherichia coli. Avian Dis 42:106–118

    PubMed  CAS  Google Scholar 

  • Maurer LM, Yohannes E, Bondurant SS, Radmacher M, Slonczewski JL (2005) pH regulates genes for flagellar motility, catabolism, and oxidative stress in Escherichia coli K-12. J Bacteriol 187:304–319

    PubMed  CAS  Google Scholar 

  • Merritt J, Qi F, Goodman SD, Anderson MH, Shi W (2003) Mutation of luxS affects biofilm formation in Streptococcus mutans. Infect Immun 71:1972–1979

    PubMed  CAS  Google Scholar 

  • McClaine JW, Ford RM (2002) Reversal of flagellar rotation is important in initial attachment of Escherichia coli to glass in a dynamic system with high- and low-ionic-strength buffers. Appl Environ Microbiol 68:1280–1289

    PubMed  CAS  Google Scholar 

  • Mondragon V, Franco B, Jonas K, Suzuki K, Romeo T, Melefors O, Georgellis D (2006) pH-dependent activation of the BarA-UvrY two-component system in Escherichia coli. J Bacteriol 188: 8303–8306

    PubMed  CAS  Google Scholar 

  • Morgan R, Kohn S, Hwang SH, Hassett DJ, Sauer K (2006) BdlA, a chemotaxis regulator essential for biofilm dispersion in Pseudomonas aeruginosa. J Bacteriol 188:7335–7343

    PubMed  CAS  Google Scholar 

  • Morikawa M, Kagihiro S, Haruki M, Takano K, Branda S, Kolter R, Kanaya S (2006) Biofilm formation by a Bacillus subtilis strain that produces {gamma}-polyglutamate. Microbiology 152:2801–2807

    PubMed  CAS  Google Scholar 

  • Mulvey MA, Schilling JD, Martinez JJ, Hultgren SJ (2000) From the cover: bad bugs and beleaguered bladders: interplay between uropathogenic Escherichia coli and innate host defenses. Proc Natl Acad Sci U S A 97:8829–8835

    PubMed  CAS  Google Scholar 

  • Munro CL, Michalek SM, Macrina FL (1995) Sucrose-derived exopolymers have site-dependent roles in Streptococcus mutans-promoted dental decay. FEMS Microbiol Lett 128:327–332

    PubMed  CAS  Google Scholar 

  • Murga R, Miller JM, Donlan RM (2001) Biofilm formation by Gram-negative bacteria on central venous catheter connectors: effect of conditioning films in a laboratory model. J Clin Microbiol 39:2294–2297

    PubMed  CAS  Google Scholar 

  • Olsen A, Jonsson A, Normark S (1989) Fibronectin binding mediated by a novel class of surface organelles on Escherichia coli. Nature 338(6217):652–655

    PubMed  CAS  Google Scholar 

  • Olsen A, Arnqvist A, Hammar M, Normark S (1993a) Environmental regulation of curli production in Escherichia coli. Infect Agents Dis 2:272–274

    PubMed  CAS  Google Scholar 

  • Olsen A, Arnqvist A, Hammar M, Sukupolvi S, Normark S (1993b) The RpoS sigma factor relieves H-NS-mediated transcriptional repression of csgA, the subunit gene of fibronectin-binding curli in Escherichia coli. Mol Microbiol 7:523–536

    PubMed  CAS  Google Scholar 

  • O’Toole GA, Kolter R (1998) Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 30: 295–304

    PubMed  Google Scholar 

  • Otto K, Silhavy TJ (2002) Surface sensing and adhesion of Escherichia coli controlled by the Cpx-signaling pathway. Proc Natl Acad Sci U S A 99:2287–2292

    PubMed  CAS  Google Scholar 

  • Palmer RJ, Kazmerzak K Jr, Hansen MC, Kolenbrander PE (2001) Mutualism versus independence: strategies of mixed-species oral biofilms in vitro using saliva as the sole nutrient source. Infect Immun 69:5794–5804

    PubMed  CAS  Google Scholar 

  • Parise G, Mishra M, Itoh Y, Romeo T, Deora R (2007) Role of a putative polysaccharide locus in Bordetella biofilm development. J Bacteriol 189:750–760

    PubMed  CAS  Google Scholar 

  • Park S, Wolanin PM, Yuzbashyan EA, Silberzan P, Stock JB, Austin RH (2003) Motion to form a quorum. Science 301:188

    PubMed  CAS  Google Scholar 

  • Patti JM, Allen BL, McGavin MJ, Hook M (1994) MSCRAMM-mediated adherence of microorganisms to host tissues. Annu Rev Microbiol 48:585–617

    PubMed  CAS  Google Scholar 

  • Perry RD, Bobrov AG, Kirillina O, Jones HA, Pedersen LL, Abney J, Fetherston JD (2004) Temperature regulation of the hemin storage (Hms+) phenotype of Yersinia pestis is posttranscriptional. J Bacteriol 186:1638–1647

    PubMed  CAS  Google Scholar 

  • Pratt LA, Kolter R (1998) Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Mol Microbiol 30:285–293

    PubMed  CAS  Google Scholar 

  • Prigent-Combaret C, Vidal O, Dorel C, Lejeune P (1999) Abiotic surface sensing and biofilm-dependent regulation of gene expression in Escherichia coli. J Bacteriol 181:5993–6002

    PubMed  CAS  Google Scholar 

  • Prigent-Combaret C, Prensier G, Le Thi TT, Vidal O, Lejeune P, Dorel C (2000) Developmental pathway for biofilm formation in curli-producing Escherichia coli strains: role of flagella, curli and colanic acid. Environ Microbiol 2:450–464

    PubMed  CAS  Google Scholar 

  • Prigent-Combaret C, Brombacher E, Vidal O, Ambert A, Lejeune P, Landini P, Dorel C (2001) Complex regulatory network controls initial adhesion and biofilm formation in Escherichia coli via regulation of the csgD gene. J Bacteriol 183:7213–7223

    PubMed  CAS  Google Scholar 

  • Purevdorj-Gage B, Costerton WJ, Stoodley P (2005) Phenotypic differentiation and seeding dispersal in non-mucoid and mucoid Pseudomonas aeruginosa biofilms. Microbiology 151:1569–1576

    PubMed  CAS  Google Scholar 

  • Rachid S, Ohlsen K, Witte W, Hacker J, Ziebuhr W (2000) Effect of subinhibitory antibiotic concentrations on polysaccharide intercellular adhesin expression in biofilm-forming Staphylococcus epidermidis. Antimicrob Agents Chemother 44:3357–3363

    PubMed  CAS  Google Scholar 

  • Raivio TL, Silhavy TJ (1997) Transduction of envelope stress in Escherichia coli by the Cpx two-component system. J Bacteriol 179:7724–7733

    PubMed  CAS  Google Scholar 

  • Ramey BE, Koutsoudis M, von Bodman SB, Fuqua C (2004) Biofilm formation in plant-microbe associations. Curr Opin Microbiol 7:602–609

    PubMed  CAS  Google Scholar 

  • Rani SA, Pitts B, Beyenal H, Veluchamy RA, Lewandowski Z, Davison WM, Buckingham-Meyer K, Stewart PS (2007) Spatial patterns of DNA replication, protein synthesis and oxygen concentration within bacterial biofilms reveal diverse physiological states. J Bacteriol 189:4223–4233

    PubMed  CAS  Google Scholar 

  • Reisner A, Holler BM, Molin S, Zechner EL (2006a) Synergistic effects in mixed Escherichia coli biofilms: conjugative plasmid transfer drives biofilm expansion. J Bacteriol 188: 3582–3588

    PubMed  CAS  Google Scholar 

  • Reisner A, Krogfelt KA, Klein BM, Zechner EL, Molin S (2006b) In vitro biofilm formation of commensal and pathogenic Escherichia coli strains: impact of environmental and genetic factors. J Bacteriol 188:3572–3581

    PubMed  CAS  Google Scholar 

  • Rickard AH, Gilbert P, High NJ, Kolenbrander PE, Handley PS (2003) Bacterial coaggregation: an integral process in the development of multi-species biofilms. Trends Microbiol 11:94–100

    PubMed  CAS  Google Scholar 

  • Romeo T (1998) Global regulation by the small RNA-binding protein CsrA and the noncoding-RNA CsrB. Mol Microbiol 29:1321–1330

    PubMed  CAS  Google Scholar 

  • Romeo T (2006) When the party is over: a signal for dispersal of Pseudomonas aeruginosa biofilms. J Bacteriol 188:7325–7327

    PubMed  CAS  Google Scholar 

  • Romeo T, Gong M, Liu MY, Brun-Zinkernagel AM (1993) Identification and molecular characterization of csrA, a pleiotropic gene from Escherichia coli that affects glycogen biosynthesis, gluconeogenesis, cell size, and surface properties. J Bacteriol 175:4744–4755

    PubMed  CAS  Google Scholar 

  • Romling U, Amikam D (2006) Cyclic di-GMP as a second messenger. Curr Opin Microbiol 9:218–228

    PubMed  Google Scholar 

  • Romling U, Bian Z, Hammar M, Sierralta WD, Normark S (1998) Curli fibers are highly conserved between Salmonella typhimurium and Escherichia coli with respect to operon structure and regulation. J Bacteriol 180:722–731

    PubMed  CAS  Google Scholar 

  • Rupp CJ, Fux CA, Stoodley P (2005) Viscoelasticity of Staphylococcus aureus biofilms in response to fluid shear allows resistance to detachment and facilitates rolling migration. Appl Environ Microbiol 71:2175–2178

    PubMed  CAS  Google Scholar 

  • Ryan RP, Fouhy Y, Lucey JF, Dow JM (2006) Cyclic di-GMP signaling in bacteria: recent advances and new puzzles. J Bacteriol 188: 8327–8334

    PubMed  CAS  Google Scholar 

  • Sauer K (2003) The genomics and proteomics of biofilm formation. Genome Biol 4:219

    PubMed  Google Scholar 

  • Sauer K, Camper AK, Ehrlich GD, Costerton JW, Davies DG (2002)Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J Bacteriol 184:1140–1154

    PubMed  CAS  Google Scholar 

  • Sauer K, Cullen MC, Rickard AH, Zeef LA, Davies DG, Gilbert P (2004) Characterization of nutrient-induced dispersion in Pseudomonas aeruginosa PA01 bioflm. J Bacteriol 186:7312–7326

    PubMed  CAS  Google Scholar 

  • Schauder S, Bassler BL (2001) The languages of bacteria. Genes Dev 15:1468–1480

    PubMed  CAS  Google Scholar 

  • Schembri MA, Christiansen G, Klemm P (2001) FimH-mediated autoaggregation of Escherichia coli. Mol Microbiol 41:1419–1430

    PubMed  CAS  Google Scholar 

  • Schembri MA, Hjerrild L, Gjermansen M, Klemm P (2003a) Differential expression of the Escherichia coli autoaggregation factor antigen 43. J Bacteriol 185:2236–2242

    PubMed  CAS  Google Scholar 

  • Schembri MA, Kjaergaard K, Klemm P (2003b) Global gene expression in Escherichia coli biofilms. Mol Microbiol 48:253–267

    PubMed  CAS  Google Scholar 

  • Schembri MA, Dalsgaard D, Klemm P (2004) Capsule shields the function of short bacterial adhesins. J Bacteriol 186:1249–1257

    PubMed  CAS  Google Scholar 

  • Schooling SR, Beveridge TJ (2006) Membrane vesicles: an overlooked component of the matrices of biofilms. J Bacteriol 188:5945–5957

    PubMed  CAS  Google Scholar 

  • Schwan WR, Lee JL, Lenard FA, Matthews BT, Beck MT (2002) Osmolarity and pH growth conditions regulate fim gene transcription and type 1 pilus expression in uropathogenic Escherichia coli. Infect Immun 70:1391–1402

    PubMed  CAS  Google Scholar 

  • Shi W, Zhou Y, Wild J, Adler J, Gross CA (1992) DnaK, DnaJ, GrpE are required for flagellum synthesis in Escherichia coli. J Bacteriol 174:6256–6263

    PubMed  CAS  Google Scholar 

  • Shin S, Park C (1995) Modulation of flagellar expression in Escherichia coli by acetyl phosphate and the osmoregulator OmpR. J Bacteriol 177:4696–4702

    PubMed  CAS  Google Scholar 

  • Shrout JD, Chopp DL, Just CL, Hentzer M, Givskov M, Parsek MR (2006) The impact of quorum sensing and swarming motility on Pseudomonas aeruginosa biofilm formation is nutritionally conditional. Mol Microbiol 62:1264–1277

    PubMed  CAS  Google Scholar 

  • Silverman M, Simon M (1974) Characterization of Escherichia coli flagellar mutants that are insensitive to catabolite repression. J Bacteriol 120:1196–1203

    PubMed  CAS  Google Scholar 

  • Simm R, Fetherston JD, Kader A, Romling U, Perry RD (2005) Phenotypic convergence mediated by GGDEF-domain-containing proteins. J Bacteriol 187:6816–6823

    PubMed  CAS  Google Scholar 

  • Singh PK, Parsek MR, Greenberg EP, Welsh MJ (2002) A component of innate immunity prevents bacterial biofilm development. Nature 417: 552–555

    PubMed  CAS  Google Scholar 

  • Soutourina OA, Bertin PN (2003) Regulation cascade of flagellar expression in Gram-negative bacteria. FEMS Microbiol Rev 27:505–523

    PubMed  CAS  Google Scholar 

  • Soutourina O, Kolb A, Krin E, Laurent-Winter C, Rimsky S, Danchin A, Bertin P (1999) Multiple control of flagellum biosynthesis in Escherichia coli: role of H-NS protein and the cyclic AMP-catabolite activator protein complex in transcription of the flhDC master operon. J Bacteriol 181:7500–7508

    PubMed  CAS  Google Scholar 

  • Soutourina OA, Krin E, Laurent-Winter C, Hommais F, Danchin A, Bertin PN (2002) Regulation of bacterial motility in response to low pH in Escherichia coli: the role of H-NS protein. Microbiology 148:1543–1551

    PubMed  CAS  Google Scholar 

  • Spoering AL, Gilmore MS (2006) Quorum sensing and DNA release in bacterial biofilms. Curr Opin Microbiol 9:133–137

    PubMed  CAS  Google Scholar 

  • Stapper AP, Narasimhan G, Ohman DE, Barakat J, Hentzer M, Molin S, Kharazmi A, Hoiby N, Mathee K (2004) Alginate production affects Pseudomonas aeruginosa biofilm development and architecture, but is not essential for biofilm formation. J Med Microbiol 53:679–690

    PubMed  CAS  Google Scholar 

  • Stanley NR, Lazazzera BA (2004) Environmental signals and regulatory pathways that influence biofilm formation. Mol Microbiol 52(4):917–924

    PubMed  CAS  Google Scholar 

  • Steinberger RE, Holden PA (2005) Extracellular DNA in single- and multiple-species unsaturated biofilms. Appl Environ Microbiol 71:5404–5410

    PubMed  CAS  Google Scholar 

  • Stoodley P, Lewandowski Z, Boyle JD, Lappin-Scott HM (1999) The formation of migratory ripples in a mixed species bacterial biofilm growing in turbulent flow. Environ Microbiol 1:447–455

    PubMed  CAS  Google Scholar 

  • Stoodley P, Sauer K, Davies, DG, Costerton JW (2002a) Biofilms as complex differentiated communities. Annu Rev Microbiol 56:187–209

    PubMed  CAS  Google Scholar 

  • Stoodley P, Cargo R, Rupp CJ, Wilson S, Klapper I (2002b) Biofilm material properties as related to shear-induced deformation and detachment phenomena. J Ind Microbiol Biotechnol 29:361–367

    PubMed  CAS  Google Scholar 

  • Sutherland IW (2001a) Biofilm exopolysaccharides: a strong and sticky framework. Microbiology 147:3–9

    PubMed  CAS  Google Scholar 

  • Sutherland IW (2001b) The biofilm matrix - an immobilized but dynamic microbial environment. Trends Microbiol 9:222–227

    PubMed  CAS  Google Scholar 

  • Suzuki K, Wang X, Weilbacher T, Pernestig AK, Melefors O, Georgellis D, Babitzke P, Romeo T (2002) Regulatory circuitry of the CsrA/CsrB and BarA/UvrY systems of Escherichia coli. J Bacteriol 184:5130–5140

    PubMed  CAS  Google Scholar 

  • Suzuki K, Babitzke P, Kushner SR, Romeo T (2006) Identification of a novel regulatory protein (CsrD) that targets the global regulatory RNAs CsrB and CsrC for degradation by RNase E. Genes Dev 20: 2605–2617

    PubMed  CAS  Google Scholar 

  • Thomas WE, Nilsson LM, Forero M, Sokurenko EV, Vogel V (2004) Shear-dependent ‘stick-and-roll’ adhesion of type 1 fimbriated Escherichia coli. Mol Microbiol 53:1545–1557

    PubMed  CAS  Google Scholar 

  • Thormann KM, Saville RM, Shukla S, Spormann AM (2005) Induction of rapid detachment in Shewanella oneidensis MR-1 biofilms. J Bacteriol 187:1014–1021

    PubMed  CAS  Google Scholar 

  • Thormann KM, Duttler S, Saville RM, Hyodo M, Shukla S, Hayakawa Y, Spormann AM (2006) Control of formation and cellular detachment from Shewanella oneidensis MR-1 biofilms by cyclic di-GMP. J Bacteriol 188:2681–2691

    PubMed  CAS  Google Scholar 

  • Tieszer C, Reid G, Denstedt J (1998) Conditioning film deposition on ureteral stents after implantation. J Urol 160: 876–881

    PubMed  CAS  Google Scholar 

  • Tolker-Nielsen T, Molin S (2000) Spatial organization of microbial biofilm communities. Microb Ecol 40:75–84

    PubMed  Google Scholar 

  • Tormo MA, Marti M, Valle J, Manna AC, Cheung AL, Lasa, I, Penades JR (2005) SarA is an essential positive regulator of Staphylococcus epidermidis biofilm development. J Bacteriol 187:2348–2356

    PubMed  CAS  Google Scholar 

  • Ulett GC, Webb RI, Schembri MA (2006) Antigen-43-mediated autoaggregation impairs motility in Escherichia coli. Microbiology 152:2101–2110

    PubMed  CAS  Google Scholar 

  • Valle J, Toledo-Arana A, Berasain C, Ghigo JM, Amorena B, Penades JR, Lasa I (2003) SarA and not σB is essential for biofilm development by Staphylococcus aureus. Mol Microbiol 48:1075–1087

    PubMed  CAS  Google Scholar 

  • Valle J, Vergara M, Merino N, Penadés JR, Lasa I (2007) σB regulates IS256-mediated Staphylococcus aureus biofilm phenotypic variation. J Bacteriol Epub in advance of print

    Google Scholar 

  • Van Loosdrecht MC, Heijnen JJ, Eberl H, Kreft J, Picioreanu C (2002) Mathematical modelling of biofilm structures. Antonie Van Leeuwenhoek 81:245–256

    PubMed  CAS  Google Scholar 

  • Vasseur P, Vallet-Gely I, Soscia C, Genin S, Filloux A (2005) The pel genes of the Pseudomonas aeruginosa PAK strain are involved at early and late stages of biofilm formation. Microbiology 151:985–997

    PubMed  CAS  Google Scholar 

  • Vianney A, Jubelin G, Renault S, Dorel C, Lejeune P, Lazzaroni JC (2005)Escherichia coli tol and rcs genes participate in the complex network affecting curli synthesis. Microbiology 151:2487–2497

    PubMed  CAS  Google Scholar 

  • Vidal O, Longin R, Prigent-Combaret C, Dorel C, Hooreman M, Lejeune P (1998) Isolation of an Escherichia coli K-12 mutant strain able to form biofilms on inert surfaces: involvement of a new ompR allele that increases curli expression. J Bacteriol 180:2442–2449

    PubMed  CAS  Google Scholar 

  • Von Bodman SB, Ball JK, Faini MA, Herrera CM, Minogue TD, Urbanowski ML, Stevens AM (2003) The quorum sensing negative regulators EsaR and ExpREcc, homologues within the LuxR family, retain the ability to function as activators of transcription. J Bacteriol 185:7001–7007

    PubMed  CAS  Google Scholar 

  • Vuong C, Gerke C, Somerville GA, Fischer ER, Otto M (2003) Quorum-sensing control of biofilm factors in Staphylococcus epidermidis. J Infect Dis 188:706–718

    PubMed  CAS  Google Scholar 

  • Vuong C, Kocianova S, Voyich JM, Yao Y, Fischer ER, DeLeo FR, Otto M (2004) A crucial role for exopolysaccharide modification in bacterial biofilm formation, immune evasion, and virulence. J Biol Chem 279:54881–54886

    PubMed  CAS  Google Scholar 

  • Vuong C, Kidder JB, Jacobson ER, Otto M, Proctor RA, Somerville GA (2005)Staphylococcus epidermidis polysaccharide intercellular adhesin production significantly increases during tricarboxylic acid cycle stress. J Bacteriol 187:2967–2973

    PubMed  CAS  Google Scholar 

  • Waite RD, Papakonstantinopoulou A, Littler E, Curtis MA (2005) Transcriptome analysis of Pseudomonas aeruginosa growth: comparison of gene expression in planktonic cultures and developing and mature biofilms. J Bacteriol 187:6571–6576

    PubMed  CAS  Google Scholar 

  • Wallecha A, Munster V, Correnti J, Chan T, van der Woude M (2002) Dam- and OxyR-dependent phase variation of agn43: essential elements and evidence for a new role of DNA methylation. J Bacteriol 184:3338–3347

    PubMed  CAS  Google Scholar 

  • Wallecha A, Correnti J, Munster V, van der Woude M (2003) Phase variation of Ag43 is independent of the oxidation state of OxyR. J Bacteriol 185:2203–2209

    PubMed  CAS  Google Scholar 

  • Wang X, Preston JF 3rd, Romeo T (2004) The pgaABCD locus of Escherichia coli promotes the synthesis of a polysaccharide adhesin required for biofilm formation. J Bacteriol 186:2724–2734

    PubMed  CAS  Google Scholar 

  • Wang X, Dubey AK, Suzuki K, Baker CS, Babitzke P, Romeo T (2005) CsrA post-transcriptionally represses pgaABCD, responsible for synthesis of a biofilm polysaccharide adhesin of Escherichia coli. Mol Microbiol 56:1648–1663

    Article  PubMed  CAS  Google Scholar 

  • Waters CM, Bassler BL (2005) Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 21:319–346

    PubMed  CAS  Google Scholar 

  • Weber H, Pesavento C, Possling A, Tischendorf G, Hengge R (2006) Cyclic-di-GMP-mediated signaling within the ss network of Escherichia coli. Mol Microbiol 62:1014–1034

    PubMed  CAS  Google Scholar 

  • Wei BL, Brun-Zinkernagel AM, Simecka JW, Pruss BM, Babitzke P, Romeo T (2001) Positive regulation of motility and flhDC expression by the RNA-binding protein CsrA of Escherichia coli. Mol Microbiol 40:245–256

    PubMed  CAS  Google Scholar 

  • Weigel LM, Donlan RM, Shin DH, Jensen B, Clark NC, McDougal LK, Zhu W, Musser KA, Thompson J, Kohlerschmidt D, Dumas N, Limberger RJ, Patel JB (2007) High-level vancomycin-resistant Staphylococcus aureus isolates associated with a polymicrobial biofilm. Antimicrob Agents Chemother 51:231–238

    PubMed  CAS  Google Scholar 

  • Weilbacher T, Suzuki K, Dubey AK, Wang X, Gudapaty S, Morozov I, Baker CS, Georgellis D, Babitzke P, Romeo T (2003) A novel sRNA component of the carbon storage regulatory system of Escherichia coli. Mol Microbiol 48:657–670

    PubMed  CAS  Google Scholar 

  • Whitchurch CB, Tolker-Nielsen T, Ragas PC, Mattick JS (2002) Extracellular DNA required for bacterial biofilm formation. Science 295:1487

    PubMed  CAS  Google Scholar 

  • Wolfe AJ (2005) The acetate switch. Microbiol Mol Biol Rev 69:12–50

    PubMed  CAS  Google Scholar 

  • Wolfe AJ, Chang DE, Walker JD, Seitz-Partridge JE, Vidaurri MD, Lange CF, Pruss BM, Henk MC, Larkin JC, Conway T (2003) Evidence that acetyl phosphate functions as a global signal during biofilm development. Mol Microbiol 48:977–988

    PubMed  CAS  Google Scholar 

  • Wozniak DJ, Wyckoff TJ, Starkey M, Keyser R, Azadi P, O’Toole GA, Parsek MR (2003) Alginate is not a significant component of the extracellular polysaccharide matrix of PA14 and PAO1Pseudomonas aeruginosa biofilms. Proc Natl Acad Sci U S A 100:7907–7912

    PubMed  CAS  Google Scholar 

  • Xavier KB, Bassler BL (2003) LuxS quorum sensing: more than just a numbers game. Curr Opin Microbiol 6:191–197

    PubMed  CAS  Google Scholar 

  • Xu L, Li H, Vuong C, Vadyvaloo V, Wang J, Yao Y, Otto M, Gao Q (2006) Role of the luxS quorum-sensing system in biofilm formation and virulence of Staphylococcus epidermidis. Infect Immun 74:488–496

    PubMed  CAS  Google Scholar 

  • Yarwood JM, Bartels DJ, Volper EM, Greenberg EP (2004) Quorum sensing in Staphylococcus aureus biofilms. J Bacteriol 186:1838–1350

    PubMed  CAS  Google Scholar 

  • Ziebuhr W, Krimmer V, Rachid S, Lossner I, Gotz F, Hacker J (1999) A novel mechanism of phase variation of virulence in Staphylococcus epidermidis: evidence for control of the polysaccharide intercellular adhesin synthesis by alternating insertion and excision of the insertion sequence element IS256. Mol Microbiol 32:345–356

    PubMed  CAS  Google Scholar 

  • ZoBell CE (1943) The effect of solid surfaces upon bacterial activity. J Bacteriol 46:39–56

    PubMed  CAS  Google Scholar 

  • Zogaj X, Bokranz W, Nimtz M, Romling U (2003) Production of cellulose and curli fimbriae by members of the family Enterobacteriaceae isolated from the human gastrointestinal tract. Infect Immun 71:4151–4158

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Goller, C.C., Romeo, T. (2008). Environmental Influences on Biofilm Development. In: Romeo, T. (eds) Bacterial Biofilms. Current Topics in Microbiology and Immunology, vol 322. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75418-3_3

Download citation

Publish with us

Policies and ethics