Skip to main content
Log in

Biosynthesis of the respiratory formate dehydrogenases from Escherichia coli: characterization of the FdhE protein

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Escherichia coli can perform two modes of formate metabolism. Under respiratory conditions, two periplasmically-located formate dehydrogenase isoenzymes couple formate oxidation to the generation of a transmembrane electrochemical gradient; and under fermentative conditions a third cytoplasmic isoenzyme is involved in the disproportionation of formate to CO2 and H2. The respiratory formate dehydrogenases are redox enzymes that comprise three subunits: a molybdenum cofactor- and FeS cluster-containing catalytic subunit; an electron-transferring ferredoxin; and a membrane-integral cytochrome b. The catalytic subunit and its ferredoxin partner are targeted to the periplasm as a complex by the twin-arginine transport (Tat) pathway. Biosynthesis of these enzymes is under control of an accessory protein termed FdhE. In this study, it is shown that E. coli FdhE interacts with the catalytic subunits of the respiratory formate dehydrogenases. Purification of recombinant FdhE demonstrates the protein is an iron-binding rubredoxin that can adopt monomeric and homodimeric forms. Bacterial two-hybrid analysis suggests the homodimer form of FdhE is stabilized by anaerobiosis. Site-directed mutagenesis shows that conserved cysteine motifs are essential for the physiological activity of the FdhE protein and are also involved in iron ligation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

DMSO:

Dimethyl sulphoxide

EPR:

Electron paramagnetic resonance

SPA:

Sequential peptide affinity

Tat:

Twin-arginine translocation pathway

TMAO:

Trimethylamine N-oxide

References

  • Abaibou H, Pommier J, Benoit S, Giordano G, Mandrand-Berthelot MA (1995) Expression and characterization of the Escherichia coli fdo locus and a possible physiological role for aerobic formate dehydrogenase. J Bacteriol 177:7141–7149

    PubMed  CAS  Google Scholar 

  • Baar C, Eppinger M, Raddatz G, Simon J, Lanz C, Klimmek O, Nandakumar R, Gross R, Rosinus A, Keller H, Jagtap P, Linke B, Meyer F, Lederer H, Schuster SC (2003) Complete genome sequence and analysis of Wolinella succinogenes. Proc Natl Acad Sci USA 100:11690–11695

    Article  PubMed  CAS  Google Scholar 

  • Berks BC (1996) A common export pathway for proteins binding complex redox cofactors? Mol Microbiol 22:393–404

    Article  PubMed  CAS  Google Scholar 

  • Berks BC, Palmer T, Sargent F (2003) The Tat protein translocation pathway and its role in microbial physiology. Adv Microb Physiol 47:187–254

    Article  PubMed  CAS  Google Scholar 

  • Berg BL, Li J, Heider J, Stewart V (1991) Nitrate-inducible formate dehydrogenase in Escherichia coli K-12. I. Nucleotide sequence of the fdnGHI operon and evidence that opal (UGA) encodes selenocysteine. J Biol Chem 266:22380–22385

    PubMed  CAS  Google Scholar 

  • Bertero MG, Rothery RA, Palak M, Hou C, Lim D, Blasco F, Weiner JH, Strynadka NC (2003) Insights into the respiratory electron transfer pathway from the structure of nitrate reductase-A. Nat Struct Biol 10:681–687

    Article  PubMed  CAS  Google Scholar 

  • Boyington JC, Gladyshev VN, Khangulov SV, Stadtman TC, Sun PD (1997) Crystal structure of formate dehydrogenase H: catalysis involving Mo, molybdopterin, selenocysteine, and an Fe4S4 cluster. Science 275:1305–1308

    Article  PubMed  CAS  Google Scholar 

  • Butland G, Peregrín-Alvarez JM, Li J, Yang W, Yang X, Canadien V, Starostine A, Richards D, Beattie B, Krogan N, Davey M, Parkinson J, Greenblatt JF, Emili A (2005) Interaction network containing conserved and essential protein complexes in Escherichia coli. Nature 433:531–537

    Article  PubMed  CAS  Google Scholar 

  • Casadaban MJ, Cohen SN (1979) Lactose genes fused to exogenous promoters in one step using a Mu-lac bacteriophage: in vivo probe for transcriptional control sequences. Proc Natl Acad Sci USA 76:4530–4533

    Article  PubMed  CAS  Google Scholar 

  • Cristóbal S, de Gier JW, Nielsen H, von Heijne G (1999) Competition between Sec- and Tat-dependent protein translocation in Escherichia coli. EMBO J 18:2982–2990

    Article  PubMed  Google Scholar 

  • Enoch HG, Lester RL (1975) The purification and properties of formate dehydrogenase and nitrate reductase from Escherichia coli. J Biol Chem 250:6693–6705

    PubMed  CAS  Google Scholar 

  • Hagelueken G, Wiehlmann L, Adams TM, Kolmar H, Heinz DW, Tümmler B, Schubert WD (2007) Crystal structure of the electron transfer complex rubredoxin rubredoxin reductase of Pseudomonas aeruginosa. Proc Natl Acad Sci USA 104:12276–12281

    Article  PubMed  Google Scholar 

  • Hamilton CM, Aldea M, Washburn BK, Babitzke P, Kushner SR (1989) New method for generating deletions and gene replacements in Escherichia coli. J Bacteriol 171:4617–4622

    PubMed  CAS  Google Scholar 

  • Hatzixanthis K, Palmer T, Sargent F (2003) A subset of bacterial inner membrane proteins integrated by the twin-arginine translocase. Mol Microbiol 49:1377–1390

    Article  PubMed  CAS  Google Scholar 

  • Hatzixanthis K, Clarke TA, Oubrie A, Richardson DJ, Turner RJ, Sargent F (2005) Signal peptide-chaperone interactions on the twin-arginine protein transport pathway. Proc Natl Acad Sci USA 102:8460–8465

    Article  PubMed  CAS  Google Scholar 

  • Hicks MG, Lee PA, Georgiou G, Berks BC, Palmer T (2005) Positive selection for loss-of-function tat mutations identifies critical residues required for TatA activity. J Bacteriol 187:2920–2925

    Article  PubMed  CAS  Google Scholar 

  • Jack RL, Buchanan G, Dubini A, Hatzixanthis K, Palmer T, Sargent F (2004) Co-ordinating assembly and export of complex bacterial proteins. EMBO J 23:3962–3972

    Article  PubMed  CAS  Google Scholar 

  • Jormakka M, Törnroth S, Byrne B, Iwata S (2002) Molecular basis of proton motive force generation: structure of formate dehydrogenase-N. Science 295:1863–1868

    Article  PubMed  Google Scholar 

  • Jormakka M, Richardson DJ, Byrne B, Iwata S (2004) Architecture of NarGH reveals a structural classification of Mo-bisMGD enzymes. Structure 12:95–104

    Article  PubMed  CAS  Google Scholar 

  • Karimova G, Pidoux J, Ullmann A, Ladant D (1998) A bacterial two-hybrid system based on a reconstituted signal transduction pathway. Proc Natl Acad Sci USA 95:5752–5756

    Article  PubMed  CAS  Google Scholar 

  • Karimova G, Ullmann A, Ladant D (2001) Protein-protein interaction between Bacillus stearothermophilus tyrosyl-tRNA synthetase subdomains revealed by a bacterial two-hybrid system. J Mol Microbiol Biotechnol 3:73–82

    PubMed  CAS  Google Scholar 

  • Kisker C, Schindelin H, Rees DC (1997) Molybdenum-cofactor-containing enzymes: structure and mechanism. Annu Rev Biochem 66:233–267

    Article  PubMed  CAS  Google Scholar 

  • Kröger A, Biel S, Simon J, Gross R, Unden G, Lancaster CR (2002) Fumarate respiration of Wolinella succinogenes: enzymology, energetics and coupling mechanism. Biochim Biophys Acta 1553:23–38

    Article  PubMed  Google Scholar 

  • Lämmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 277:680–685

    Article  Google Scholar 

  • Lanciano P, Vergnes A, Grimaldi S, Guigliarelli B, Magalon A (2007) Biogenesis of a respiratory complex is orchestrated by a single accessory protein. J Biol Chem 282:17468–17474

    Article  PubMed  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Maillard J, Spronk CAEM, Buchanan G, Lyall V, Richardson DJ, Palmer T, Vuister GW, Sargent F (2007) Structural diversity in twin-arginine signal peptide-binding proteins. Proc Natl Acad Sci USA 104:15641–15646

    Article  PubMed  CAS  Google Scholar 

  • Mandrand-Berthelot MA, Couchoux-Luthaud G, Santini CL, Giordano G (1988) Mutants of Escherichia coli specifically deficient in respiratory formate dehydrogenase activity. J Gen Microbiol 134:3129–3139

    PubMed  CAS  Google Scholar 

  • McDevitt CA, Hugenholtz P, Hanson GR, McEwan AG (1997) Molecular analysis of dimethyl sulphide dehydrogenase from Rhodovulum sulfidophilum: its place in the dimethyl sulphoxide reductase family of microbial molybdopterin-containing enzymes. Mol Microbiol 44:1575–1587

    Article  Google Scholar 

  • Oresnik IJ, Ladner CL, Turner RJ (2001) Identification of a twin-arginine leader-binding protein. Mol Microbiol 40:323–331

    Article  PubMed  CAS  Google Scholar 

  • Palmer T, Sargent F, Berks BC (2005) Export of complex cofactor-containing proteins by the bacterial Tat pathway. Trends Microbiol 13:175–180

    Article  PubMed  CAS  Google Scholar 

  • Peisach J, Blumberg WE, Lode ET, Coon MJ (1971) An analysis of the electron paramagnetic resonance spectrum of Pseudomonas oleovorans rubredoxin. A method for determination of the ligands of ferric iron in completely rhombic sites. J Biol Chem 246:5877–5881

    PubMed  CAS  Google Scholar 

  • Punginelli C, Ize B, Stanley NR, Stewart V, Sawers G, Berks BC, Palmer T (2004) mRNA secondary structure modulates translation of Tat-dependent formate dehydrogenase-N. J Bacteriol 186:6311–6315

    Article  PubMed  CAS  Google Scholar 

  • Raaijmakers HC, Romão MJ (2006) Formate-reduced E. coli formate dehydrogenase H: the reinterpretation of the crystal structure suggests a new reaction mechanism. J Biol Inorg Chem 11:849–854

    Article  PubMed  CAS  Google Scholar 

  • Richardson DJ, Sawers G (2002) PMF through the redox loop. Science 295:1842–1843

    Article  PubMed  CAS  Google Scholar 

  • Sargent F (2007a) The twin-arginine transport system: moving folded proteins across membranes. Biochem Soc Trans 35:835–847

    Article  PubMed  CAS  Google Scholar 

  • Sargent F (2007b) Constructing the wonders of the bacterial world: biosynthesis of complex enzymes. Microbiology 153:633–651

    Article  PubMed  CAS  Google Scholar 

  • Sawers G (1994) The hydrogenases and formate dehydrogenases of Escherichia coli. Antonie van Leeuwenhoek 66:57–88

    Article  PubMed  CAS  Google Scholar 

  • Schlindwein C, Giordano G, Santini CL, Mandrand MA (1990) Identification and expression of the Escherichia coli fdhD and fdhE genes, which are involved in the formation of respiratory formate dehydrogenase. J Bacteriol 172:6112–6121

    PubMed  CAS  Google Scholar 

  • Schlindwein C, Mandrand MA (1991) Nucleotide sequence of the fdhE gene involved in respiratory formate dehydrogenase formation in Escherichia coli K-12. Gene 97:147–148

    Article  PubMed  CAS  Google Scholar 

  • Stanley NR, Sargent F, Buchanan G, Shi J, Stewart V, Palmer T, Berks BC (2002) Behaviour of topological marker proteins targeted to the Tat protein transport pathway. Mol Microbiol 43:1005–1021

    Article  PubMed  CAS  Google Scholar 

  • Stewart V, Lin JT, Berg BL (1991) Genetic evidence that genes fdhD and fdhE do not control synthesis of formate dehydrogenase-N in Escherichia coli K-12. J Bacteriol 173:4417–4423

    PubMed  CAS  Google Scholar 

  • Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76:4350–4354

    Article  PubMed  CAS  Google Scholar 

  • Tullman-Ercek D, DeLisa MP, Kawarasaki Y, Iranpour P, Ribnicky B, Palmer T, Georgiou G (2007) Export pathway selectivity of Escherichia coli twin arginine translocation signal peptides. J Biol Chem 282:8309–8316

    Article  PubMed  CAS  Google Scholar 

  • Turner RJ, Papish AL, Sargent F (2004) Sequence analysis of bacterial redox enzyme maturation proteins (REMPs). Can J Microbiol 50:225–238

    Article  PubMed  CAS  Google Scholar 

  • Vergnes A, Pommier J, Toci R, Blasco F, Giordano G, Magalon A (2006) NarJ chaperone binds on two distinct sites of the aponitrate reductase of Escherichia coli to co-ordinate molybdenum cofactor insertion and assembly. J Biol Chem 281:2170–2176

    Article  PubMed  CAS  Google Scholar 

  • Yu D, Ellis HM, Lee EC, Jenkins NA, Copeland NG, Court DL (2000) An efficient recombination system for chromosome engineering in Escherichia coli. Proc Natl Acad Sci USA 97:5978–5983

    Article  PubMed  CAS  Google Scholar 

  • Zeghouf M, Li J, Butland G, Borkowska A, Canadien V, Richards D, Beattie B, Emili A, Greenblatt JF (2004) Sequential Peptide Affinity (SPA) system for the identification of mammalian and bacterial protein complexes. J Proteome Res 3:463–468

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

M. G. Hicks (John Innes Centre, Norwich) is thanked for performing some preliminary enzyme assays and W. Yang, X. Yang, S. Chandran and P. Wong (University of Toronto) are thanked for technical assistance. This work was funded in the UK by the BBSRC through awards BB/C006844/2 and BBS/S/P/2003/10319 (to FS) and a grant-in-aid to the John Innes Centre, Norwich. TP is an MRC Senior Non-Clinical Research Fellow and FS is a Royal Society University Research Fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Sargent.

Additional information

Communicated by Theo Hansen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lüke, I., Butland, G., Moore, K. et al. Biosynthesis of the respiratory formate dehydrogenases from Escherichia coli: characterization of the FdhE protein. Arch Microbiol 190, 685–696 (2008). https://doi.org/10.1007/s00203-008-0420-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-008-0420-4

Keywords

Navigation