Skip to main content
Log in

Inactivation of Burkholderia pseudomallei bsaQ results in decreased invasion efficiency and delayed escape of bacteria from endocytic vesicles

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Burkholderia pseudomallei, an infectious Gram-negative bacterium, is the causative pathogen of melioidosis. In the present study, a B. pseudomallei strain with mutation in the bsaQ gene, encoding a structural component of the type III secretion system (T3SS), was constructed. This bsaQ mutation caused a marked decrease in secretion of BopE effector and BipD translocator proteins into culture supernatant. The B. pseudomallei bsaQ mutant also exhibited decreased efficiencies of plaque formation, invasion into non-phagocytic cells and multinucleated giant cell (MNGC) development in a J774A.1 macrophage cell line. Co-localization of the bacteria and lysosome-associated membrane glycoprotein-1 (LAMP-1) containing vesicles suggested that defects in MNGC formation may result from the delayed ability of this B. pseudomallei mutant to escape from the vacuoles of macrophages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

T3SS:

Type III secretion system

BsaQ:

Burhkolderia secretion apparatus Q

LAMP-1:

Lysosome-associated membrane glycoprotein-1

MNGC:

Multinucleated giant cell

References

  • Alexeyev MF (1999) The pKNOCK series of broad-host-range mobilizable suicide vectors for gene knockout and targeted DNA insertion into the chromosome of gram-negative bacteria. Biotechniques 26:824–826, 828

    Google Scholar 

  • Attree O, Attree I (2001) A second type III secretion system in Burkholderia pseudomallei: who is the real culprit? Microbiology 147:3197–3199

    PubMed  CAS  Google Scholar 

  • Chierakul W et al (2005) Melioidosis in 6 tsunami survivors in southern Thailand. Clin Infect Dis 41:982–990

    Article  PubMed  Google Scholar 

  • de Lorenzo V, Timmis KN (1994) Analysis and construction of stable phenotypes in gram-negative bacteria with Tn5- and Tn10-derived minitransposons. Methods Enzymol 235:386–405

    Article  PubMed  CAS  Google Scholar 

  • Finkelstein RA, Atthasampunna P, Chulasamaya M (2000) Pseudomonas (Burkholderia) pseudomallei in Thailand, 1964–1967: geographic distribution of the organism, attempts to identify cases of active infection, and presence of antibody in representative sera. Am J Trop Med Hyg 62:232–239

    PubMed  CAS  Google Scholar 

  • Galan JE, Ginocchio C, Costeas P (1992) Molecular and functional characterization of the Salmonella invasion gene invA: homology of InvA to members of a new protein family. J Bacteriol 174:4338–4349

    PubMed  CAS  Google Scholar 

  • Gauthier A, Puente JL, Finlay BB (2003) Secretin of the enteropathogenic Escherichia coli type III secretion system requires components of the type III apparatus for assembly and localization. Infect Immun 71:3310–3319

    Article  PubMed  CAS  Google Scholar 

  • Ginocchio CC, Galan JE (1995) Functional conservation among members of the Salmonella typhimurium InvA family of proteins. Infect Immun 63:729–732

    PubMed  CAS  Google Scholar 

  • Haller JC, Carlson S, Pederson KJ, Pierson DE (2000) A chromosomally encoded type III secretion pathway in Yersinia enterocolitica is important in virulence. Mol Microbiol 36:1436–1446

    Article  PubMed  CAS  Google Scholar 

  • Hii CS, Sun GW, Goh JW, Lu J, Stevens MP, Gan YH (2008) Interleukin-8 Induction by Burkholderia pseudomallei Can Occur without Toll-Like Receptor Signaling but Requires a Functional Type III Secretion System. J Infect Dis

  • Kespichayawattana W, Rattanachetkul S, Wanun T, Utaisincharoen P, Sirisinha S (2000) Burkholderia pseudomallei induces cell fusion and actin-associated membrane protrusion: a possible mechanism for cell-to-cell spreading. Infect Immun 68:5377–5384

    Article  PubMed  CAS  Google Scholar 

  • Kespichayawattana W, Intachote P, Utaisincharoen P, Sirisinha S (2004) Virulent Burkholderia pseudomallei is more efficient than avirulent Burkholderia thailandensis in invasion of and adherence to cultured human epithelial cells. Microb Pathog 36:287–292

    Article  PubMed  CAS  Google Scholar 

  • Koszyca B, Currie BJ, Blumbergs PC (2004) The neuropathology of melioidosis: two cases and a review of the literature. Clin Neuropathol 23:195–203

    PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Rainbow L, Hart CA, Winstanley C (2002) Distribution of type III secretion gene clusters in Burkholderia pseudomallei, B. thailandensis and B. mallei. J Med Microbiol 51:374–384

    PubMed  CAS  Google Scholar 

  • Raja NS (2003) Localized melioidosis. J Pak Med Assoc 53:373–374

    PubMed  CAS  Google Scholar 

  • Ribot WJ, Ulrich RL (2006) The animal pathogen-like type III secretion system is required for the intracellular survival of Burkholderia mallei within J774.2 macrophages. Infect Immun 74:4349–4353

    Article  PubMed  CAS  Google Scholar 

  • Schwarzmaier A, Riezinger-Geppert F, Schober G, Karnik R, Valentin A (2000) Fulminant septic melioidosis after a vacation in Thailand. Wien Klin Wochenschr 112:892–895

    PubMed  CAS  Google Scholar 

  • Stevens MP et al (2002) An Inv/Mxi-Spa-like type III protein secretion system in Burkholderia pseudomallei modulates intracellular behaviour of the pathogen. Mol Microbiol 46:649–659

    Article  PubMed  CAS  Google Scholar 

  • Stevens MP et al (2003) A Burkholderia pseudomallei type III secreted protein, BopE, facilitates bacterial invasion of epithelial cells and exhibits guanine nucleotide exchange factor activity. J Bacteriol 185:4992–4996

    Article  PubMed  CAS  Google Scholar 

  • Stevens MP et al (2004) Attenuated virulence and protective efficacy of a Burkholderia pseudomallei bsa type III secretion mutant in murine models of melioidosis. Microbiology 150:2669–2676

    Article  PubMed  CAS  Google Scholar 

  • Stevens MP et al (2005) Identification of a bacterial factor required for actin-based motility of Burkholderia pseudomallei. Mol Microbiol 56:40–53

    Article  PubMed  CAS  Google Scholar 

  • Sun GW, Lu J, Pervaiz S, Cao WP, Gan YH (2005) Caspase-1 dependent macrophage death induced by Burkholderia pseudomallei. Cell Microbiol 7:1447–1458

    Article  PubMed  CAS  Google Scholar 

  • Suparak S et al (2005) Multinucleated giant cell formation and apoptosis in infected host cells is mediated by Burkholderia pseudomallei type III secretion protein BipB. J Bacteriol 187:6556–6560

    Article  PubMed  CAS  Google Scholar 

  • Suputtamongkol Y et al (1994) The epidemiology of melioidosis in Ubon Ratchatani, northeast Thailand. Int J Epidemiol 23:1082–1090

    Article  PubMed  CAS  Google Scholar 

  • Ulrich RL, DeShazer D (2004) Type III secretion: a virulence factor delivery system essential for the pathogenicity of Burkholderia mallei. Infect Immun 72:1150–1154

    Article  PubMed  CAS  Google Scholar 

  • White NJ (2003) Melioidosis. Lancet 361:1715–1722

    Article  PubMed  CAS  Google Scholar 

  • Wuthiekanun V, Smith MD, Dance DA, White NJ (1995) Isolation of Pseudomonas pseudomallei from soil in north-eastern Thailand. Trans R Soc Trop Med Hyg 89:41–43

    Article  PubMed  CAS  Google Scholar 

  • Zhou D, Galan J (2001) Salmonella entry into host cells: the work in concert of type III secreted effector proteins. Microbes Infect 3:1293–1298

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Siriraj Grant for Research and Development. V. Muangsombut is supported by Siriraj Graduate Thesis Scholarship. S. Suparak is supported by a postdoctoral grant from the Commission on Higher Education Thailand. We are grateful to M.P. Stevens (Compton Laboratory, UK), Dr. E.E. Galyov (Leicester University, UK) and Prof. R. Titball (DSTL, UK) for providing B. pseudomallei specific antisera and suggestions. We wish to thank E. Singsuksawat for RT-PCR analysis. We are also grateful to Dr. J. Cuccui for his kind help on editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunee Korbsrisate.

Additional information

Communicated by Sebastian Suerbaum.

Veerachat Muangsombut and Supaporn Suparak contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muangsombut, V., Suparak, S., Pumirat, P. et al. Inactivation of Burkholderia pseudomallei bsaQ results in decreased invasion efficiency and delayed escape of bacteria from endocytic vesicles. Arch Microbiol 190, 623–631 (2008). https://doi.org/10.1007/s00203-008-0413-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-008-0413-3

Keywords

Navigation