Skip to main content

Advertisement

Log in

Novel lipoarabinomannan-like lipoglycan (CdiLAM) contributes to the adherence of Corynebacterium diphtheriae to epithelial cells

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The genus Corynebacterium is part of the phylogenetic group nocardioform actinomycetes. Members of this group have a characteristic cell envelope structure composed primarily of branched long-chain lipids, termed mycolic acids, and a rich number of lipoglycans such as lipoarabinomanans (LAM) and lipomannans. In this study, we identified a novel LAM variant isolated from Corynebacterium diphtheriae named CdiLAM. The key structural features of CdiLAM are a linear α-1→6-mannan with side chains containing 2-linked α-D-Manp and 4-linked α-D-Araf residues. The polysaccharide backbone is linked to a phosphatidylinositol anchor. In contrast to the LAMs of other members of actinomycetales, CdiLAM presents an unusual substitution at position 4 of α-1→6-mannan backbone by α-D-Araf. Unlike the non-fimbrial adhesin 62–72p, CdiLAM did not function as a hemagglutinin to human red blood cells. Experimental evidences pointed to CdiLAM as an adhesin of C. diphtheriae to human respiratory epithelial cells, thereby, contributing to the pathogenesis of diphtheria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bertuccini L, Baldassarri L, von Hunolstein C (2004) Internalization of non-toxigenic Corynebacterium diphtheriae by cultured human respiratory epithelial cells. Microb Pathog 37:111–118

    Article  PubMed  CAS  Google Scholar 

  • Brennan PJ, Nikaido H (1995) The envelope of mycobacteria. Annu Rev Biochem 64:29–63

    Article  PubMed  CAS  Google Scholar 

  • Briken V, Porcelli SA, Besra GS, Kremer L (2004) Mycobacterial lipoarabinomannan and related lipoglycans: from biogenesis to modulation of the immune response. Mol Microbiol 53:391–403

    Article  PubMed  CAS  Google Scholar 

  • Chan J, Fan XD, Hunter SW, Brennan PJ, Bloom BR (1991) Lipoarabinomannan, a possible virulence factor involved in persistence of Mycobacterium tuberculosis within macrophages. Infect Immun 59:1755–1761

    PubMed  CAS  Google Scholar 

  • Chatterjee D, Hunter SW, McNeil M, Brennan PJ (1992) Lipoarabinomannan: multiglycosylated form of the mycobacterial mannosylphosphatidylinositols. J Biol Chem 267:6228–6233

    PubMed  CAS  Google Scholar 

  • Ciucanu I, Kerek F (1984) A simple and rapid method for the permetylation of carbohydrates. Carbohydr Res 131:209–271

    Article  CAS  Google Scholar 

  • Colombo AV, Hirata R Jr, de Souza CM, Monteiro-Leal LH, Previato JO, Formiga LC, Andrade AF, Mattos-Guaraldi AL (2001) Corynebacterium diphtheriae surface proteins as adhesins to human erythrocytes. FEMS Microbiol Lett 197:235–239

    Article  PubMed  CAS  Google Scholar 

  • Dao DN, Kremer L, Guerardel Y, Molano A, Jacobs WR Jr, Porcelli SA, Briken V (2004) Mycobacterium tuberculosis lipomannan induces apoptosis and interleukin-12 production in macrophages. Infect Immun 72:2067–2074

    Article  PubMed  CAS  Google Scholar 

  • Dittmann S, Wharton M, Vitek C, Ciotti M, Galazka A, Guichard S, Hardy I, Kartoglu U, Koyama S, Kreysler J, Martin B, Mercer D, Ronne T, Roure C, Steinglass R, Strebel P, Sutter R, Trostle M (2000) Successful control of epidemic diphtheria in the states of the former Union of Soviet Socialist Republics: lessons learned. J Infect Dis 181(Suppl 1):S10–S22

    Article  PubMed  Google Scholar 

  • Dubois M, Gilles K, Hamilton JK, Rebers PA, Smith F (1951) A colorimetric method for the determination of sugars. Nature 168:167

    Article  PubMed  CAS  Google Scholar 

  • Flaherty C, Sutcliffe IC (1999) Identification of a lipoarabinomannan-like lipoglycan in Gordonia rubropertincta. Syst Appl Microbiol 22:530–533

    PubMed  CAS  Google Scholar 

  • Flaherty C, Minnikin DE, Sutcliffe IC (1996) A chemotaxonomic study of the lipoglycans of Rhodococcus rhodnii N445 (NCIMB 11279). Zentralbl Bakteriol 285:11–19

    PubMed  CAS  Google Scholar 

  • Galazka A (2000) The changing epidemiology of diphtheria in the vaccine era. J Infect Dis 181(Suppl 1):S2–S9

    Article  PubMed  Google Scholar 

  • Garton NJ, Sutcliffe IC (2006) Identification of a lipoarabinomannan-like lipoglycan in the actinomycete Gordonia bronchialis. Arch Microbiol 184:425–427

    Article  PubMed  CAS  Google Scholar 

  • Garton NJ, Gilleron M, Brando T, Dan HH, Giguere S, Puzo G, Prescott JF, Sutcliffe IC (2002) A novel lipoarabinomannan from the equine pathogen Rhodococcus equi. Structure and effect on macrophage cytokine production. J Biol Chem 277:31722–31733

    Article  PubMed  CAS  Google Scholar 

  • Geijtenbeek TB, van Vliet SJ, Koppel EA, Sanchez-Hernandez M, Vandenbroucke-Grauls CM, Appelmelk B, van Kooyk Y (2003) Mycobacteria target DC-SIGN to suppress dendritic cell function. J Exp Med 197:7–17

    Article  PubMed  CAS  Google Scholar 

  • Gibson KJ, Gilleron M, Constant P, Puzo G, Nigou J, Besra GS (2003a) Structural and functional features of Rhodococcus ruber lipoarabinomannan. Microbiology 149:1437–1445

    Article  PubMed  CAS  Google Scholar 

  • Gibson KJ, Gilleron M, Constant P, Puzo G, Nigou J, Besra GS (2003b) Identification of a novel mannose-capped lipoarabinomannan from Amycolatopsis sulphurea. Biochem J 372:821–829

    Article  PubMed  CAS  Google Scholar 

  • Gibson KJ, Gilleron M, Constant P, Brando T, Puzo G, Besra GS, Nigou J (2004) Tsukamurella paurometabola lipoglycan, a new lipoarabinomannan variant with pro-inflammatory activity. J Biol Chem 279:22973–22982

    Article  PubMed  CAS  Google Scholar 

  • Gibson KJ, Gilleron M, Constant P, Sichi B, Puzo G, Besra GS, Nigou J (2005) A lipomannan variant with strong TLR-2-dependent pro-inflammatory activity in Saccharothrix aerocolonigenes. J Biol Chem 280:28347–28356

    Article  PubMed  CAS  Google Scholar 

  • Gilleron M, Garton NJ, Nigou J, Brando T, Puzo G, Sutcliffe IC (2005) characterization of a truncated lipoarabinomannan from the actinomycete Turicella otitidis. J Bacteriol 187:854–861

    Article  PubMed  CAS  Google Scholar 

  • Goodfellow M, Weaver CR, Minnikin DE (1982) Numerical classification of some Rhodococci, Corynebacteria and related organisms. J Gen Microbiol 128:731–745

    PubMed  CAS  Google Scholar 

  • Guerardel Y, Maes E, Briken V, Chirat F, Leroy Y, Locht C, Strecker G, Kremer L (2003) Lipomannan and lipoarabinomannan from a clinical isolate of Mycobacterium kansasii: novel structural features and apoptosis-inducing properties. J Biol Chem 278:36637–36651

    Article  PubMed  CAS  Google Scholar 

  • Harlow E, Lane D (1988) Antibodies: a laboratory manual. Cold Spring Harbor Laboratory Press, New York, pp 353

  • Hirata R, Napoleão F, Monteiro-Leal LH, Andrade AF, Nagao PE, Formiga LC, Fonseca LS, Mattos-Guaraldi AL (2002) Intracellular viability of toxigenic Corynebacterium diphtheriae strains in HEp-2 cells. FEMS Microbiol Lett 215:115–119

    Article  PubMed  CAS  Google Scholar 

  • Hirata R Jr, Souza SM, Rocha-de-Souza CM, Andrade AF, Monteiro-Leal LH, Formiga LC, Mattos-Guaraldi AL (2004) Patterns of adherence to HEp-2 cells and actin polymerisation by toxigenic Corynebacterium diphtheriae strains. Microb Pathog 36:125–130

    Article  PubMed  CAS  Google Scholar 

  • Kokeguchi S, Kato K, Ohta H, Fukui K, Tsujimoto M, Ogawa T, Takada H, Kotani S (1987) Isolation and characterization of an amphipathic antigen from Corynebacterium diphtheriae. Microbios 50:183–199

    PubMed  CAS  Google Scholar 

  • Mandlik A, Swierczynski A, Das A, Ton-That H (2007) Corynebacterium diphtheriae employs specific minor pilins to target human pharyngeal epithelial cells. Mol Microbiol 64(1):111–124

    Article  PubMed  CAS  Google Scholar 

  • Mattos KA, Todeschini AR, Heise N, Jones C, Previato JO, Mendonça-Previato L (2005) Nitrogen-fixing bacterium Burkholderia brasiliensis produces a novel yersiniose A-containing O-polysaccharide. Glycobiology 15:313–321

    Article  PubMed  CAS  Google Scholar 

  • Mattos-Guaraldi AL, Formiga LC (1986) Agglutination of sheep erythrocytes by Corynebacterium diphtheriae. Braz J Med Biol Res 19:75–77

    PubMed  CAS  Google Scholar 

  • Mattos-Guaraldi AL, Formiga LC, Andrade AF (1998) trans-Sialidase activity for sialic acid incorporation on Corynebacterium diphtheriae. FEMS Microbiol Lett 168:167–172

    Article  PubMed  CAS  Google Scholar 

  • Mattos-Guaraldi AL, Cappelli EA, Previato JO, Formiga LC, Andrade AF (1999) Characterization of surface saccharides in two Corynebacterium diphtheriae strains. FEMS Microbiol Lett 170:159–166

    Article  PubMed  CAS  Google Scholar 

  • Mattos-Guaraldi AL, Formiga LC, Pereira GA (2000) Cell surface components and adhesion in Corynebacterium diphtheriae. Microbes Infect 2:1507–1512

    Article  PubMed  CAS  Google Scholar 

  • Mattos-Guaraldi AL, Moreira LO, Damasco PV, Hirata R Jr (2003) Diphtheria remains a threat to health in the developing world—an overview. Mem Inst Oswaldo Cruz 98:987–993

    Article  PubMed  Google Scholar 

  • Moreira LdeO, Andrade AF, Vale MD, Souza SM, Hirata R Jr, Asad LM, Asad NR, Monteiro-Leal LH, Previato JO, Mattos-Guaraldi AL (2003) Effects of iron limitation on adherence and cell surface carbohydrates of Corynebacterium diphtheriae strains. Appl Environ Microbiol 69:5907–5913

    Article  CAS  Google Scholar 

  • Nigou J, Zelle-Rieser C, Gilleron M, Thurnher M, Puzo G (2001) Mannosylated lipoarabinomannans inhibit IL-12 production by human dendritic cells: evidence for a negative signal delivered through the mannose receptor. J Immunol 166:7477–7485

    PubMed  CAS  Google Scholar 

  • Pizarro-Cerdá J, Cossart P (2006) Bacterial adhesion and entry into host cells. Cell 124:715–727

    Article  PubMed  Google Scholar 

  • Puissegur MP, Lay G, Gilleron M, Botella L, Nigou J, Marrakchi H, Mari B, Duteyrat JL, Guerardel Y, Kremer L, Barbry P, Puzo G, Altare F (2007) Mycobacterial lipomannan induces granuloma macrophage fusion via a TLR2-dependent, ADAM9- and beta1 integrin-mediated pathway. Am J Immunol 178:3161–3169

    CAS  Google Scholar 

  • Sharma NC, Banavaliker JN, Ranjan R, Kumar R (2007) Bacteriological and epidemiological characteristics of diphtheria cases in and around Delhi: a retrospective study. Indian J Med Res 126:545–552

    PubMed  CAS  Google Scholar 

  • Strohmeier GR, Fenton MJ (1999) Roles of lipoarabinomannan in the pathogenesis of tuberculosis. Microbes Infect 1:709–717

    Article  PubMed  CAS  Google Scholar 

  • Sutcliffe IC (1995) Identification of a lipoarabinomannan-like lipoglycan in Corynebacterium matruchotii. Arch Oral Biol 40:1119–1124

    Article  PubMed  CAS  Google Scholar 

  • Sutcliffe IC (2000) Characterization of a lipomannan lipoglycan from the mycolic acid containing actinomycete Dietzia maris. Antonie Van Leeuwenhoek 78:195–201

    Article  PubMed  CAS  Google Scholar 

  • Sweely CC, Bentley R, Makita M, Well WW (1963) Gas-liquid chromatography of trymethylsilyl derivates of sugars and related substances. J Am Chem Soc 85:2497

    Article  Google Scholar 

  • Tailleux L, Schwartz O, Herrmann JL, Pivert E, Jackson M, Amara A, Legres L, Dreher D, Nicod LP, Gluckman JC, Lagrange PH, Gicquel B, Neyrolles O (2003) DC-SIGN is the major Mycobacterium tuberculosis receptor on human dendritic cells. J Exp Med 197:121–127

    Article  PubMed  CAS  Google Scholar 

  • Tatituri RV, Illarionov PA, Dover LG, Nigou J, Gilleron M, Hitchen P, Krumbach K, Morris HR, Spencer N, Dell A, Eggeling L, Besra GS (2007) Inactivation of Corynebacterium glutamicum NCgl0452 and the role of MgtA in the biosynthesis of a novel mannosylated glycolipid involved in lipomannan biosynthesis. J Biol Chem 282:4561–4572

    Article  PubMed  CAS  Google Scholar 

  • Westphal O, Jann K (1965) Bacterial lipopolissacharides; extraction with phenol-water and further applications of procedure. Method Carbohydr Chem 5:83–91

    CAS  Google Scholar 

  • Wishart DS, Bigam CG, Yao J, Abildgaard F, Dyson HJ, Oldfield E, Markley JL, Sykes BD (1995) 1H, 13C and 15 N chemical shift referencing in biomolecular NMR. J Biomol NMR 6:135–140

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. José Osvaldo Previato and Dr. Adriane Regina Todeschini for technical assistance with lipoglycan analysis and the Centro Nacional de Ressonância Mangnética Nuclear, UFRJ, Brasil, for the NMR facilities. This work was supported by a grants from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Amparo a Pesquisa do Estado do Rio de Janeiro (FAPERJ), SR2-UERJ and Programa de Núcleo de Excelência (PRONEX) of the Brazilian Ministry of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. O. Moreira.

Additional information

Communicated by Axel Brakhage.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moreira, L.O., Mattos-Guaraldi, A.L. & Andrade, A.F.B. Novel lipoarabinomannan-like lipoglycan (CdiLAM) contributes to the adherence of Corynebacterium diphtheriae to epithelial cells. Arch Microbiol 190, 521–530 (2008). https://doi.org/10.1007/s00203-008-0398-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-008-0398-y

Keywords

Navigation