Skip to main content
Log in

Anaerobic growth of Escherichia coli on d-tartrate depends on the fumarate carrier DcuB and fumarase, rather than the l-tartrate carrier TtdT and l-tartrate dehydratase

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Escherichia coli is able to grow under anaerobic conditions on d-tartrate when glycerol is supplied as an electron donor (d-tartrate fermentation). d-Tartrate was converted to succinate. Growth was lost in strains deficient for DcuB, the fumarate/succinate antiporter of fumarate respiration. The l-tartrate/succinate antiporter TtdT of l-tartrate fermentation, or the C4-dicarboxylate carriers DcuA and DcuC, were not able to support d-tartrate transport and fermentation. Deletion of fumB demonstrated, that fumarase B is required for growth on d-tartrate. The mutant lost most (about 79%) of d-tartrate dehydratase activity. l-Tartrate dehydratase (TtdAB), and fumarase A or C, showed no or only a small contribution to d-tartrate dehydratase activity. Therefore d-tartrate is metabolised by a sequence of reactions analogous to that from l-tartrate fermentation, including dehydration to oxaloacetate, which is then converted to malate, fumarate and succinate. The stereoisomer specific carrier TtdT and dehydratase TtdAB of l-tartrate fermentation are substituted by enzymes from general anaerobic fumarate metabolism, the antiporter DcuB and fumarase B, which have a broader substrate specificity. No d-tartrate specific carriers and enzymes are involved in the pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Baba TA, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H (2006) Construction of Escherichia coli K-12 in frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2:2006.0008

    Google Scholar 

  • Barker HA (1936) On the fermentation of some dibasic C4-acids by Aerobacter aerogenes. Proc Acad Sci Amsterdam 39:674

    CAS  Google Scholar 

  • Böck A, Sawers G (1996) Escherichia coli and Salmonella typhimurium. Neidhardt (ed) ASM Press, Washington. pp 587–593

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Crouzet P, Otten L (1995) Sequence and mutational analysis of a tartrate utilization operon from Agrobacterium vitis. J Bacteriol 177:6518–6526

    PubMed  CAS  Google Scholar 

  • Engel P, Krämer R, Unden G (1992) Anaerobic fumarate transport in Escherichia coli by an fnr-dependent dicarboxylate uptake system which is different from the aerobic dicarboxylate uptake system. J Bacteriol 174:5533–5539

    PubMed  CAS  Google Scholar 

  • Engel P, Krämer R, Unden G (1994) Transport of C4-dicarboxylates by anaerobically grown Escherichia coli: energetics and mechanism of exchange, uptake and efflux. Eur J Biochem 222:605–614

    Article  PubMed  CAS  Google Scholar 

  • Falzone CJ, Karsten WE, Conley JD, Viola RE (1988) l-aspartase from Escherichia coli: substrate specificity and role of divalent metal ions. Biochemistry 27:9089–9093

    Article  PubMed  CAS  Google Scholar 

  • Furuyoshi S, Nawa Y, Kawabata N, Tanaka H, Soda K (1991) Purification and characterization of a new NAD(+)-dependent enzyme, l-tartrate decarboxylase, from Pseudomonas sp. group Ve-2. J Biochem (Tokyo) 110:520–525

    CAS  Google Scholar 

  • Golby P, Kelly DJ, Guest JR, Andrews SC (1998) Transcriptional regulation and organization of the dcuA and dcuB genes, encoding homologous anaerobic C4-dicarboxylate transporters in Escherichia coli. J Bacteriol 180:6586–6596

    PubMed  CAS  Google Scholar 

  • Golby P, Davies S, Kelly DJ, Guest JR, Andrews SC (1999) Identification and characterization of a two-component sensor-kinase and response-regulator system (DcuS-DcuR) controlling gene expression in response to C4-dicarboxylates in Escherichia coli. J Bacteriol 181:1238–1248

    PubMed  CAS  Google Scholar 

  • Heeb S, Itoh Y, Nishijyo T, Schnider U, Keel C, Wade J, Walsh U, O’Gara F, Haas D (2000) Small, stable shuttle vectors based on the minimal pVS1 replicon for use in gram-negative, plant-associated bacteria. Mol Plant Microbe Interact 13:232–237

    Article  PubMed  CAS  Google Scholar 

  • Janausch IG, Zientz E, Tran QH, Kröger A, Unden G (2002) C4-dicarboxylate carriers and sensors in bacteria. Biochim Biophys Acta 1553:39–56

    Article  PubMed  CAS  Google Scholar 

  • Karsten WE, Gates RB, Viola RE (1986) Kinetic studies of L-aspartase from Escherichia coli: substrate activation. Biochemistry 25:1299–1303

    Article  PubMed  CAS  Google Scholar 

  • Karsten WE, Tipton PA, Cook PF (2002) Tartrate dehydrogenase catalyzes the stepwise oxidative decarboxylation of d-malate with both NAD and Thio-NAD. Biochem 41:12193–12199

    Article  CAS  Google Scholar 

  • Kim OB, Unden G (2007) The l-tartrate/succinate antiporter TtdT (YgjE) of l-tartrate fermentation in Escherichia coli. J Bacteriol 189:1597–1603

    Article  PubMed  CAS  Google Scholar 

  • Kim OB, Schumacher U, Grimpo J, Dünnwald P, Unden G (2007) (unpublished)

  • Kneuper H, Janausch IG, Vijayan V, Zweckstetter M, Bock V, Griesinger C, Unden G (2005) The nature of the stimulus and of the fumarate binding site of the fumarate sensor DcuS of Escherichia coli. J Biol Chem 280:20596–20603

    Article  PubMed  CAS  Google Scholar 

  • Kohn LD, Jakoby WB (1968) Tartaric acid metabolism. V. Crystalline tartrate dehydrogenase. J Biol Chem 243:2479–2485

    PubMed  CAS  Google Scholar 

  • Lehnen D, Blumer C, Polen T, Wackwitz B, Wendisch VF, Unden G (2002) LrhA as a new transcriptional key regulator of flagella, motility and chemotaxis genes in Escherichia coli. Mol Microbiol 45:521–532

    Article  PubMed  CAS  Google Scholar 

  • Malorny B, Bunge C, Helmuth R (2003) Discrimination of d-tartrate-fermenting and -nonfermenting Salmonella enterica subsp. enterica isolates by genotypic and phenotypic methods. J Clin Microbiol 41:4292–4297

    Article  PubMed  CAS  Google Scholar 

  • Miles JS, Guest JR (1984) Complete nucleotide sequence of the fumarase gene fumA of Escherichia coli. Nucleic Acids Res 12:3631–3642

    Article  PubMed  CAS  Google Scholar 

  • Miller JH (1992) A short course in bacterial genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Nakamura S, Ogata H (1968) Specificity of fumarate hydratase. J Biol Chem 243:533–537

    PubMed  CAS  Google Scholar 

  • Ohshima T, Biville F (2006) Functional identification of ygiP as a positive regulator of the ttdA-ttdB-ygjE operon. Microbiology 152:2129–2135

    Article  Google Scholar 

  • Pos KM, Dimroth P, Bott M (1998) The Escherichia coli citrate carrier CitT: a member of a novel eubacterial transporter family related to the 2-oxoglutarate/malate translocator from spinach chloroplasts. J Bacteriol 180:4160–4165

    PubMed  CAS  Google Scholar 

  • Prakash S, Cooper G, Singhi S, Saier MH Jr (2003) The ion transporter superfamily. Biochim Biophys Acta 1618:79–92

    Article  PubMed  CAS  Google Scholar 

  • Reaney SK, Begg C, Bungard SJ, Guest JR (1993) Identification of the l-tartratase genes (ttdA and ttdB) of Escherichia coli and evolutionary relationship with the Class I fumarase genes. J Gen Microbiol 139:1523–1530

    PubMed  CAS  Google Scholar 

  • Rid M, Rid S, Petit A, Bollet C, Dessaux Y, Gardan L (2000) Charaterization of plasmid-born and chromosome-ended traits of Agrobacterium Biovar 1,2, and 3 strains from France. Appl Environ Microbiol 66:1818–1825

    Article  Google Scholar 

  • Rode H, Giffhorn F (1982a) d-(−)-tartrate dehydratase of Rhodopseudomonas spheroids: purification, characterization and application to enzymatic determination of d-(−)-tartrate. J Bacteriol 150:1061–1068

    PubMed  CAS  Google Scholar 

  • Rode H, Giffhorn F (1982b) Ferrous- or cobalt ion-dependent d-(−)-tartrate dehydratase of Pseudomonas: purification and properties. J Bacteriol 150:1062–1064

    Google Scholar 

  • Rode H, Giffhorn F (1983) Adaptation of Rhodopseudomonas spheroids to growth on d-(−)-tartrate and large-scale production of a constitutive d-(−)-tartrate dehydratase during growth on dl-malate. Appl Environ Microbiol 45:716–719

    PubMed  CAS  Google Scholar 

  • Ruszczycky MW, Anderson VE (2004) Tartrate dehydrogenase reductive decarboxylation: stereochemical generation of diastereotopically deuterated hydroxymethylenes. Bioorg Chem 32:51–61

    Article  PubMed  CAS  Google Scholar 

  • Saier MH Jr (1998) Transport classification database. (http://www.tcdb.org/index.php)

  • Salomone JY, Otten L (1999) Structure and function fo a conserved DNA region coding for tartrate utilization in Agrobacterium vitis. FEMS Micriobiol Lett 174:333–337

    Article  CAS  Google Scholar 

  • Six S, Andrews SC, Unden G, Guest JR (1994) Escherichia coli possesses two homologous anaerobic C4-dicarboxylate transporters (DcuA and DcuB) distinct from the aerobic dicarboxylate transport system (Dct). J Bacteriol 176:6470–6478

    PubMed  CAS  Google Scholar 

  • Spencer ME, Guest JR (1987) Regulation of citric acid cycle genes in facultative bacteria. Microbiol Sci 4:164–167

    PubMed  CAS  Google Scholar 

  • Tipton PA, Beecher BS (1994) Tartrat dehydrogenase, a new member of the family of metal-dependent decarboxylating R-hydroxyacid dehydrogenase. Arch Biochem Biophys 313:15–21

    Article  PubMed  CAS  Google Scholar 

  • Tran HQ, Bongaerts J, Vlad D, Unden G (1997) Requirement for the proton-pumping NADH I dehydrogenase of Escherichia coli in NADH-fumarate respiration and bioenergetic implications. Eur J Biochem 244:155–160

    Article  PubMed  CAS  Google Scholar 

  • Unden G, Kleefeld A (2004) C4-dicarboxylate degradation in aerobic and anaerobic growth. In: Curtiss R III (ed) EcoSal—Escherichia coli and Salmonella: cellular and molecular biology, Chap 3.4.5. http://www.ecosal.org. ASM Press, Washington

  • Vaughn RH, Marsch GL, Stadtmann TC, Cantino BC (1946) Decomposition of tartrates by the coliform bacteria. J Bacteriol 52:311–325

    PubMed  CAS  Google Scholar 

  • Woehlke G, Dimroth P (1994) Anaerobic growth of Salmonella typhimurium on l(+)- and d(−)-tartrate involves an oxaloacetate decarboxylase Na+ pump. Arch Microbiol 162:233–237

    PubMed  CAS  Google Scholar 

  • Zientz E, Six S, Unden G (1996) Identification of a third secondary carrier (DcuC) for anaerobic C4-dicarboxylate transport in Escherichia coli: roles of the three Dcu carriers in uptake and exchange. J Bacteriol 176:7241–7247

    Google Scholar 

  • Zientz E, Bongaerts J, Unden G. (1998) Fumarate regulation of gene expression in Escherichia coli by the DcuSR (dcuSR) two-component regulatory system. J Bacteriol 180:5421–5425

    PubMed  CAS  Google Scholar 

  • Zientz E, Janausch IG, Six S, Unden G (1999) Functioning of DcuC as the C4-dicarboxylate carrier during glucose fermentation by Escherichia coli. J Bacteriol 181:3716–3720

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The work was supported by grants to G.U. by Deutsche Forschungs gemeinschaft and the Innovationsstiftung Rheinland-Pfalz. We are grateful to A. Kleefeld (Mainz) for supplying strains IMW374 and plasmid pMW228, and H. Mori (Keio University, Japan) for strains from the NIG/Keio collection. We are very grateful to W. Buckel (Marburg) for helpful discussions on the stereochemistry of d- and l-tartrate and of the corresponding enzymes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gottfried Unden.

Additional information

Communicated by David Kelly.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, O.B., Lux, S. & Unden, G. Anaerobic growth of Escherichia coli on d-tartrate depends on the fumarate carrier DcuB and fumarase, rather than the l-tartrate carrier TtdT and l-tartrate dehydratase. Arch Microbiol 188, 583–589 (2007). https://doi.org/10.1007/s00203-007-0279-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-007-0279-9

Keywords

Navigation