Skip to main content

Advertisement

Log in

Association of the Rv0679c protein with lipids and carbohydrates in Mycobacterium tuberculosis/Mycobacterium bovis BCG

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The Rv0679c gene in Mycobacterium tuberculosis H37Rv encodes a protein with a predicted molecular mass of 16,586 Da consisting of 165 amino acids which contains a putative N-terminal signal sequence and a consensus lipoprotein-processing motif. Globomycin treatment, Triton X-114 separation and mass spectrometry analyses clarified a property of the Rv0679c protein as a lipoprotein. In addition, trifluoromethanesulphonic acid treatment of the lysate revealed an association of the recombinant Rv0679c protein with carbohydrates. The Rv0679c protein homolog of Mycobacterium bovis BCG was also expressed as the protein associated with lipids and carbohydrates. In Western blot analysis, each of the protein homolog and Lipoarabinomannan (LAM) was detected as a similar pattern by anti-Rv0679c and anti-LAM antibodies, respectively. Interestingly, the Rv0679c protein was detected in commercially available LAM purified from M. tuberculosis. Inhibition assay of LAM synthesis in M. bovis BCG by ethambutol showed an altered migration pattern of the Rv0679c protein to low molecular mass similar to that of LAM. The results suggest that the Rv0679c protein exists as a tight complex with LAM in M. tuberculosis/M. bovis BCG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

LAM:

Lipoarabinomannan

LM:

Lipomannan

PIM:

Phosphatidyl-myo-inositol mannosides

TFMS:

Trifluoromethanesulfonic acid

References

  • Aliprantis AO, Yang RB, Mark MR, Suggett S, Devaux B, Radolf JD, Klimpel GR, Godowski P, Zychlinsky A (1999) Cell activation and apoptosis by bacterial lipoproteins through toll-like receptor-2. Science 285:736–739

    Article  PubMed  CAS  Google Scholar 

  • Andersen AB, Ljungqvist L, Olsen M (1990) Evidence that protein antigen b of Mycobacterium tuberculosis is involved in phosphate metabolism. J Gen Microbiol 136:477–480

    PubMed  CAS  Google Scholar 

  • Barnes PF, Cave MD (2003) Molecular epidemiology of tuberculosis. N Engl J Med 349:1149–1156

    Article  PubMed  CAS  Google Scholar 

  • Bloom BR, Fine PEM (1994) The BCG experience: implication for future vaccines against tuberculosis. In: Bloom BR (ed) Tuberculosis: pathogenesis, protection, control. American Society for Microbiology Press, Washington DC, pp 531–557

    Google Scholar 

  • Bordier C (1981) Phase separation of integral membrane proteins in Triton X-114 solution. J Biol Chem 256:1604–1607

    PubMed  CAS  Google Scholar 

  • Brennan PJ, Nikaido H (1995) The envelope of mycobacteria. Annu Rev Biochem 64:29–63

    Article  PubMed  CAS  Google Scholar 

  • Brightbill HD, Libraty DH, Krutzik SR, Yang RB, Belisle JT, Bleharski JR, Maitland M, Norgard MV, Plevy SE, Smale ST, Brennan PJ, Bloom BR, Godowski PJ, Modlin RL (1999) Host defense mechanisms triggered by microbial lipoproteins through toll-like receptors. Science 285:732–736

    Article  PubMed  CAS  Google Scholar 

  • Briken V, Porcelli SA, Besra GS, Kremer L (2004) Mycobacterial lipoarabinomannan and related lipoglycans: from biogenesis to modulation of the immune response. Mol Microbiol 53:391–403

    Article  PubMed  CAS  Google Scholar 

  • Colditz GA, Brewer TF, Berkey CS, Wilson ME, Burdick E, Fineberg HV, Mosteller F (1994) Efficacy of BCG vaccine in the prevention of tuberculosis. Meta-analysis of the published literature. JAMA 271:698–702

    Article  PubMed  CAS  Google Scholar 

  • Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV, Eiglmeier K, Gas S, Barry CE III, Tekaia F, Badcock K, Basham D, Brown D, Chillingworth T, Connor R, Davies R, Devlin K, Feltwel T, Gentles S, Hamlin N, Holroyd S, Hornsby T, Jagels K, Krogh A, McLean J, Moule S, Murphy L, Oliver K, Osborne J, Quail MA, Rajandream M-A, Rogers J, Rutter S, Seeger K, Skelton J, Squares R, Squares S, Sulston JE, Taylor K, Whitehead S, Barrell BG et al (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544

    Article  PubMed  CAS  Google Scholar 

  • Daffé M, Draper P (1998) The envelope layers of mycobacteria with reference to their pathogenicity. Adv Microb Physiol 39:131–203

    PubMed  Google Scholar 

  • Dahl JL, Wei J, Moulder JW, Laal S, Friedman RL (2001) Subcellular localization of the Iitracellular survival-enhancing Eis protein of Mycobacterium tuberculosis. Infect Immun 69:4295–4302

    Article  PubMed  CAS  Google Scholar 

  • Dev IK, Harvey RJ, Ray PH (1985) Inhibition of prolipoprotein signal peptidase by globomycin. J Biol Chem 260:5891–5894

    PubMed  CAS  Google Scholar 

  • Dmitriev BA, Ehlers S, Rietschel ET, Brennan PJ (2000) Molecular mechanics of the mycobacterial cell wall: from horizontal layers to vertical scaffolds. Int J Med Microbiol 290:251–258

    PubMed  CAS  Google Scholar 

  • Dobos KM, Khoo KH, Swiderek KM, Brennan PJ, Belisle JT (1996) Definition of the full extent of glycosylation of the 45-kilodalton glycoprotein of Mycobacterium tuberculosis. J Bacteriol 178:2498–2506

    PubMed  CAS  Google Scholar 

  • Duong F, Eichler J, Price A, Leonard MR, Wickner W (1997) Biogenesis of the gram-negative bacterial envelope. Cell 91:7973–7978

    Article  Google Scholar 

  • Edge AS (2003) Deglycosylation of glycoproteins with trifluoromethanesulphonic acid: elucidation of molecular structure and function. Biochem J 376:339–350

    Article  PubMed  CAS  Google Scholar 

  • Fleischmann RD, Alland D, Eisen JA, Carpenter L, White O, Peterson J, DeBoy R, Dodson R, Gwinn M, Haft D, Hickey E, Kolonay JF, Nelson WC, Umayam LA, Ermolaeva M, Salzberg SL, Delcher A, Utterback T, Weidman J, Khouri H, Gill J, Mikula A, Bishai W, Jacobs WR Jr, Venter JC, Fraser CM (2002) Whole-genome comparison of Mycobacterium tuberculosis clinical and laboratory strains. J Bacteriol 184:5479–5490

    Article  PubMed  CAS  Google Scholar 

  • Frieden TR, Sterling TR, Munsiff SS, Watt CJ, Dye C (2003) Tuberculosis. Lancet 362:887–899

    Article  PubMed  Google Scholar 

  • Garnier T, Eiglmeier K, Camus JC, Medina N, Mansoor H, Pryor M, Duthoy S, Grondin S, Lacroix C, Monsempe C, Simon S, Harris B, Atkin R, Doggett J, Mayes R, Keating L, Wheeler PR, Parkhill J, Barrell BG, Cole ST, Gordon V, Hewinson RG (2003) The complete genome sequence of Mycobacterium bovis. Proc Natl Acad Sci USA 100:7877–7882

    Article  PubMed  CAS  Google Scholar 

  • Garvey N, St John AC, Witkin EM (1985) Evidence for RecA protein association with the cell membrane and for changes in the levels of major outer membrane proteins in SOS-induced Escherichia coli cells. J Bacteriol 27:870–876

    Google Scholar 

  • Gattiker A, Gasteiger E, Bairoch A (2002) ScanProsite: a reference implementation of a PROSITE scanning tool. Appl Bioinformatics 1:107–108

    PubMed  CAS  Google Scholar 

  • Gooley AA, Classon BJ, Marschalek R, Williams KL (1991) Glycosylation sites identified by detection of glycosylated amino acids released from Edman degradation: the identification of Xaa-Pro-Xaa-Xaa as a motif for Thr-O-glycosylation. Biochem Biophys Res Commun 178:1194–1201

    Article  PubMed  CAS  Google Scholar 

  • Gudas LJ, Pardee AB (1976) DNA synthesis inhibition and the induction of protein X in Escherichia coli. J Mol Biol 101:459–477

    Article  PubMed  CAS  Google Scholar 

  • Guerardel Y, Maes E, Elass E, Leroy Y, Timmerman P, Besra GS, Locht C, Strecker G, Kremer L (2002) Structural study of lipomannan and lipoarabinomannan from Mycobacterium chelonae. Presence of unusual components with alpha 1,3-mannopyranose side chains. J Biol Chem 277:30635–30648

    Article  PubMed  CAS  Google Scholar 

  • Gupta R, Birch H, Rapacki K, Brunak S, Hansen JE (1999) O-GLYCBASE version 4.0: a revised database of O-glycosylated proteins. Nucleic Acids Res 27:370–372

    Article  PubMed  CAS  Google Scholar 

  • Hamasur B, Kallenius G, Svenson SB (1999) A new rapid and simple method for large-scale purification of mycobacterial lipoarabinomannan. FEMS Immunol Med Microbiol 24:11–17

    Article  PubMed  CAS  Google Scholar 

  • Hammar M, Bian Z, Normark S (1996) Nucleator-dependent intercellular assembly of adhesive curli organelles in Escherichia coli. Proc Natl Acad Sci USA 93:6562–6566

    Article  PubMed  CAS  Google Scholar 

  • Harboe M, Wiker HG, Ulvund G, Lund-Pedersen B, Andersen AB, Hewinson RG, Nagai S (1998) MPB70 and MPB83 as indicators of protein localization in mycobacterial cells. Infect Immun 66:289–296

    PubMed  CAS  Google Scholar 

  • Hayashi S, Wu HC (1990) Lipoproteins in bacteria. J Bioenerg Biomembr 22:451–471

    Article  PubMed  CAS  Google Scholar 

  • Herrmann JL, Delahay R, Gallagher A, Robertson B, Young D (2000) Analysis of post-translational modification of mycobacterial proteins using a cassette expression system. FEBS Lett 473:358–362

    Article  PubMed  CAS  Google Scholar 

  • Inukai M, Nakajima M, Osawa M, Haneishi T, Arai M (1978) Globomycin, a new peptide antibiotic with spheroplast-forming activity. II. Isolation and physico-chemical and biological characterization. J Antibiot 31:421–425

    PubMed  CAS  Google Scholar 

  • Jenkinson HF (1992) Adherence, coaggregation, and hydrophobicity of Streptococcus gordonii associated with expression of cell surface lipoproteins. Infect Immun 60:1225–1228

    PubMed  CAS  Google Scholar 

  • Kaur D, Lowary TL, Vissa VD, Crick DC, Brennan PJ (2002) Characterization of the epitope of anti-lipoarabinomannan antibodies as the terminal hexaarabinofuranosyl motif of mycobacterial arabinans. Microbiology 148:3049–3057

    PubMed  CAS  Google Scholar 

  • Lefèvre P, Denis O, De Wit L, Tanghe A, Vandenbussche P, Content J, Huygen K (2000) Cloning of the gene encoding a 22-kilodalton cell surface antigen of Mycobacterium bovis BCG and analysis of its potential for DNA vaccination against tuberculosis. Infect Immun 68:1040–1047

    Article  PubMed  Google Scholar 

  • Lindenthal C, Elsinghorst EA (2001) Enterotoxigenic Escherichia coli TibA glycoprotein adheres to human intestine epithelial cells. Infect Immun 69:52–57

    Article  PubMed  CAS  Google Scholar 

  • Madan Babu M, Sankaran K (2002) DOLOP-database of bacterial lipoproteins. Bioinformatics 18:641–643

    Article  PubMed  CAS  Google Scholar 

  • Maeda Y, Makino M, Crick DC, Mahapatra S, Srisungnam S, Takii T, Kashiwabara Y, Brennan PJ (2002) Novel 33-kilodalton lipoprotein from Mycobacterium leprae. Infect Immun 70:4106–4111

    Article  PubMed  CAS  Google Scholar 

  • Matsuyama S, Tajima T, Tokuda H (1995) A novel periplasmic carrier protein involved in the sorting and transport of Escherichia coli lipoproteins destined for the outer membrane. EMBO J 14:3365–3372

    PubMed  CAS  Google Scholar 

  • Mei JM, Nourbakhsh F, Ford CW, Holden DW (1997) Identification of Staphylococcus aureus virulence genes in a murine model of bacteraemia using signature-tagged mutagenesis. Mol Microbiol 26:399–407

    Article  PubMed  CAS  Google Scholar 

  • Michell SL, Whelan AO, Wheeler PR, Panico M, Easton RL, Etienne AT, Haslam SM, Dell A, Morris HR, Reason AJ, Herrmann JL, Young DB, Hewinson RG (2003) The MPB83 antigen from Mycobacterium bovis contains O-linked mannose and (1–>3)-mannobiose moieties. J Biol Chem 278:16423–16432

    Article  PubMed  CAS  Google Scholar 

  • Nakai K, Horton P (1999) PSORT: a program for detecting the sorting signals of proteins and predicting their subcellular localization. Trends Biochem Sci 24:34–35

    Article  PubMed  CAS  Google Scholar 

  • Nehrke K, Hagen FK, Tabak LA (1996) Charge distribution of flanking amino acids influences O-glycan acquisition in vivo. J Biol Chem 271:7061–7065

    Article  PubMed  CAS  Google Scholar 

  • Neyrolles O, Gould K, Gares MP, Brett S, Janssen R, O’Gaora P, Herrmann JL, Prèvost MC, Perret E, Thole JE, Young D (2001) Lipoprotein access to MHC class I presentation during infection of murine macrophages with live mycobacteria. J Immunol 166:447–457

    PubMed  CAS  Google Scholar 

  • Nielsen H, Engelbrecht J, Brunak S, von Heijne G (1997) Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng 10:1–6

    Article  PubMed  CAS  Google Scholar 

  • Nigou J, Gilleron M, Puzo G (2003) Lipoarabinomannans: from structure to biosynthesis. Biochimie 85:153–166

    Article  PubMed  CAS  Google Scholar 

  • O’Connell BC, Hagen FK, Tabak LA (1992) The influence of flanking sequence on the O-glycosylation of threonine in vitro. J Biol Chem 267:25010–25018

    PubMed  CAS  Google Scholar 

  • Ortalo-Magné A, Dupont MA, Lemassu A, Andersen AB, Gounon P, Daffé M (1995) Molecular composition of the outermost capsular material of the tubercle bacillus. Microbiology 141:1609–1620

    Article  PubMed  Google Scholar 

  • Petit CM, Brown JR, Ingraham K, Bryant AP, Holmes DJ (2001) Lipid modification of prelipoproteins is dispensable for growth in vitro but essential for virulence in Streptococcus pneumoniae. FEMS Microbiol Lett 200:229–233

    Article  PubMed  CAS  Google Scholar 

  • Sander P, Rezwan M, Walker B, Rampini SK, Kroppenstedt RM, Ehlers S, Keller C, Keeble JR, Hagemeier M, Colston MJ, Springer B, Bottger EC (2004) Lipoprotein processing is required for virulence of Mycobacterium tuberculosis. Mol Microbiol 52:1543–1552

    Article  PubMed  CAS  Google Scholar 

  • Sankaran K, Wu HC (1994) Lipid modification of bacterial prolipoprotein. Transfer of diacylglyceryl moiety from phosphatidylglycerol. J Biol Chem 269:19701–19706

    PubMed  CAS  Google Scholar 

  • Sankaran K, Wu HC (1995) Bacterial prolipoprotein signal peptidase. Methods Enzymol 248:169–180

    Article  PubMed  CAS  Google Scholar 

  • Schembri MA, Christiansen G, Klemm P (2001) FimH-mediated autoaggregation of Escherichia coli. Mol Microbiol 41:1419–1430

    Article  PubMed  CAS  Google Scholar 

  • Sherlock O, Vejborg RM, Klemm P (2005) The TibA adhesin/invasin from enterotoxigenic Escherichia coli is self recognizing and induces bacterial aggregation and biofilm formation. Infect Immun 73:1954–1963

    Article  PubMed  CAS  Google Scholar 

  • Stoll H, Dengjel J, Nerz C, Gotz F (2005) Staphylococcus aureus deficient in lipidation of prelipoproteins is attenuated in growth and immune activation. Infect Immun 73:2411–2423

    Article  PubMed  CAS  Google Scholar 

  • Sutcliffe IC, Harrington DJ (2004) Lipoproteins of Mycobacterium tuberculosis: an abundant and functionally diverse class of cell envelope components. FEMS Microbiol Rev 28:645–659

    Article  PubMed  CAS  Google Scholar 

  • Takase I, Ishino F, Wachi M, Kamata H, Doi M, Asoh S, Matsuzawa H, Ohta T, Matsuhashi M (1987) Genes encoding two lipoproteins in the leuSdacA region of the Escherichia coli chromosome. J Bacteriol 169:5692–6599

    PubMed  CAS  Google Scholar 

  • Theisen M (1996) Molecular cloning and characterization of nlpH, encoding a novel, surface-exposed, polymorphic, plasmid-encoded 33-kilodalton lipoprotein of Borrelia afzelii. J Bacteriol 178:6435–6442

    PubMed  CAS  Google Scholar 

  • Theisen M, Rioux CR, Potter AA (1992) Molecular cloning, nucleotide sequence, and characterization of a 40,000-molecular-weight lipoprotein of Haemophilus somnus. Infect Immun 60:826–831

    PubMed  CAS  Google Scholar 

  • Tokuda H, Matsuyama S (2004) Sorting of lipoproteins to the outer membrane in E. coli. Biochim Biophys Acta 1693:5–13

    Article  PubMed  CAS  Google Scholar 

  • Tokunaga M, Tokunaga H, Wu HC (1982) Post-translational modification and processing of Escherichia coli prolipoprotein in vitro. Proc Natl Acad Sci USA 79:2255–2259

    Article  PubMed  CAS  Google Scholar 

  • Vosloo W, Tippoo P, Hughes JE, Harriman N, Emms M, Beatty DW, Zappe H, Steyn LM (1997) Characterisation of a lipoprotein in Mycobacterium bovis (BCG) with sequence similarity to the secreted protein MPB70. Gene 188:123–128

    Article  PubMed  CAS  Google Scholar 

  • Wilson IB, Gavel Y, von Heijn G (1991) Amino acid distributions around O-linked glycosylation sites. Biochem J 275:529–534

    PubMed  CAS  Google Scholar 

  • Wu CH, Tsai-Wu JJ, Huang YT, Lin CY, Lioua GG, Lee FJ (1998) Identification and subcellular localization of a novel Cu, Zn superoxide dismutase of Mycobacterium tuberculosis. FEBS Lett 439:192–196

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi K, Yu F, Inouye M (1988) A single amino acid determinant of the membrane localization of lipoproteins in E. coli. Cell 53:423–432

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Sankyo Chemical Co., Ltd., Tokyo, Japan for the generous gift of globomycin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Matsuba.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsuba, T., Suzuki, Y. & Tanaka, Y. Association of the Rv0679c protein with lipids and carbohydrates in Mycobacterium tuberculosis/Mycobacterium bovis BCG. Arch Microbiol 187, 297–311 (2007). https://doi.org/10.1007/s00203-006-0195-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-006-0195-4

Keywords

Navigation