Skip to main content
Log in

Lipoproteins in bacteria

  • Mini-Review
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Covalent modification of membrane proteins with lipids appears to be ubiquitous in all living cells. The major outer membrane (Braun's) lipoprotein ofE. coli, the prototype of bacterial lipoproteins, is first synthesized as a precursor protein. Analysis of signal sequences of 26 distinct lipoprotein precursors has revealed a consensus sequence of lipoprotein modification/processing site of Leu-(Ala, Ser)-(Gly, Ala)-Cys at − 3 to + 1 positions which would represent the cleavage region of about three-fourth of all lipoprotein signal sequences in bacteria. Unmodified prolipoprotein with the putative consensus sequence undergoes sequential modification and processing reactions catalyzed by glyceryl transferase, O-acyl transferase(s), prolipoprotein signal peptidase (signal peptidase II), and N-acyl transferase to form mature lipoprotein. Like all exported proteins, the export of lipoprotein requires functional SecA, SecY, and SecD proteins. Thus all precursor proteins are exported through a common pathway accessible to both signal peptidase I and signal peptidase II. The rapidly increasing list of lipid-modified proteins in both prokaryotic as well as eukaryotic cells indicates that lipoproteins comprise a diverse group of structurally and functionally distinct proteins. They share a common structural feature which is derived from a common biosynthetic pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderegg, R. J., Betz, R., Carr, S. A., Crabb, J. W., and Duntze, W. (1988).J. Biol. Chem. 263, 18236–18240.

    Google Scholar 

  • Anderson, B. E., Regnery, R. L., Carlone, G. M., Tzianbos, T., McDade, J. E., Fu, Z. Y., and Bellini, W. J. (1987).J. Bacteriol. 169, 2385–2390.

    Google Scholar 

  • Bergström, S., Bundoc, V. G., and Barbour, A. G. (1989).Mol. Microbiol. 3, 479–486.

    Google Scholar 

  • Braun, V., and Rehn, K. (1969).Eur. J. Biochem. 10, 426–438.

    Google Scholar 

  • Braun, V., and Wolff, H. (1970).Eur. J. Biochem. 14, 387–391.

    Google Scholar 

  • Braun, V., Bosch, V., Klumpp, E. R., Neff, I., Mayer, H., and Schlecht, S. (1976).Eur. J. Biochem. 62, 555–566.

    Google Scholar 

  • Casey, P. J., Solski, P. A., Der, C. J., and Buss, J. E. (1989).Proc. Natl. Acad. Sci. USA 86, 8323–8327.

    Google Scholar 

  • Cavard, D., Lloubes, R., Morlon, J., Chartier, M., and Lazdunski, C. (1985).Mol. Gen. Genet. 199, 95–100.

    Google Scholar 

  • Chapon, C., and Raibaud, O. (1985).J. Bacteriol. 164, 639–645.

    Google Scholar 

  • Chattopadhyay, P. K., and Wu, H. C. (1977).Proc. Natl. Acad. Sci. USA 74, 5318–5322.

    Google Scholar 

  • Chattopadhyay, P. K., Lai, J. S., and Wu, H. C. (1979).J. Bacteriol. 137, 309–312.

    Google Scholar 

  • Chen, R., and Henning, U. (1987).Eur. J. Biochem. 163, 73–77.

    Google Scholar 

  • Chen, L., Rhoads, D., and Tai, P. C. (1985).J. Bacteriol. 161, 973–980.

    Google Scholar 

  • Ching, G., and Inouye, M. (1986).J. Biol. Chem. 261, 4600–4606.

    Google Scholar 

  • Choi, P.-S., Yamada, H., Mizuno, T., and Mizushima, S. (1986).J. Biol. Chem. 261, 8953–8957.

    Google Scholar 

  • Cole, S. T., Saint-Joanis, B., and Pugsley, A. P. (1985).Mol. Gen. Genet. 198, 465–472.

    Google Scholar 

  • Collier, D. N., Bankaitis, V. A., Weiss, J. B., and Bassford, P. J., Jr. (1988).Cell 53, 273–283.

    Google Scholar 

  • Cornelis, P., Bouia, A., Belarbi, A., Guyonvarch, A., Kammerer, B., Hannaert, V., and Hubert, J. C. (1989).Mol. Microbiol. 3, 421–428.

    Google Scholar 

  • Deich, R. A., Metcalf, B. J., Finn, C. W., Farley, J. E., and Green, B. A. (1988).J. Bacteriol. 170, 489–498.

    Google Scholar 

  • d'Enfert, C., and Pugsley, A. P. (1987).Mol. Microbiol. 1, 159–168.

    Google Scholar 

  • d'Enfert, C., and Pugsley, A. P. (1989).J. Bacteriol. 171, 3673–3679.

    Google Scholar 

  • d'Enfert, C., Pyter, A., and Pugsley, A. P. (1987).EMBO J. 6, 3531–3538.

    Google Scholar 

  • de Vrije, T., de Swart, R. L., Dowhan, W., Tommassen, J., and de Kruijff, B. (1988).Nature (London)334, 173–175.

    Google Scholar 

  • Dev, I. K., and Ray, P. H. (1984).J. Biol. Chem. 259, 11114–11120.

    Google Scholar 

  • Dev, I. K., Harvey, R. J., and Ray, P. H. (1985).J. Biol. Chem. 260, 5891–5894.

    Google Scholar 

  • Duchene, M., Barron, C., Schweizer, A., von Specht, B.-U., and Domedy, H. (1989).J. Bacteriol. 171, 4130–4137.

    Google Scholar 

  • Dudler, R., Schmidhauser, C., Parish, R. W., Wettenhall, R. E. H., and Schmidt, T. (1988).EMBO J. 7, 3963–3970.

    Google Scholar 

  • Duronio, R. J., Towler, D. A., Heuckeroth, R. O., and Gordon, J. I. (1989).Science 243, 796–800.

    Google Scholar 

  • Ferguson, M. A. J., and Williams, A. F. (1988).Annu. Rev. Biochem. 57, 285–320.

    Google Scholar 

  • Finlay, B. B., and Paranchych, W. (1986).J. Bacteriol. 166, 713–721.

    Google Scholar 

  • Garcia, P. D., Ghrayeb, J., Inouye, M., and Walter, P. (1987).J. Biol. Chem. 262, 9463–9468.

    Google Scholar 

  • Gardel, C., Benson, S., Hunt, J., Michaelis, S., and Beckwith, J. (1987).J. Bacteriol. 169, 12186–12190.

    Google Scholar 

  • Ghrayeb, J., and Inouye, M. (1984).J. Biol. Chem. 259, 463–467.

    Google Scholar 

  • Ghrayeb, J., Lunn, C. A., Inouye, S., and Inouye, M. (1985).J. Biol. Chem. 260, 10961–10965.

    Google Scholar 

  • Giam, C. Z., Chai, T., Hayashi, S., and Wu, H. C. (1984).Eur. J. Biochem. 141, 331–337.

    Google Scholar 

  • Gilson, E., Alloing, G., Schmidt, T., Claverys, J. P., Dudler, R., and Hofnung, M. (1988).EMBO J. 7, 3971–3974.

    Google Scholar 

  • Hakkart, M. J. J., Veltkamp, E., and Nijikamp, H. J. J. (1981).Mol. Gen. Genet. 183, 318–325.

    Google Scholar 

  • Hansen, E. B., Pedersen, P. E., Schouls, L. M., Severin, E., and van Embden, J. D. A. (1985).J. Bacteriol. 162, 1127–1137.

    Google Scholar 

  • Hantke, K., and Braun, V. (1973).Eur. J. Biochem. 34, 284–296.

    Google Scholar 

  • Hayashi, S., and Wu, H. C. (1983).J. Bacteriol. 156, 773–777.

    Google Scholar 

  • Hayashi, S., and Wu, H. C. (1985).J. Bacteriol. 161, 949–954.

    Google Scholar 

  • Hayashi, S., and Wu, H. C. (1988). InPost-translational Modification of Proteins by Lipids, (Brodbeck, U., and Bordier, C. eds), Springer-Verlag, Berlin, pp. 88–93.

    Google Scholar 

  • Hayashi, S., Chang, S. Y., Chang, S., and Wu, H. C. (1984).J. Biol. Chem. 259, 10448–10454.

    Google Scholar 

  • Hayashi, S., Chang, S. Y., Chang, S., Giam, C. Z., and Wu, H. C. (1985).J. Biol. Chem. 260, 5753–5759.

    Google Scholar 

  • Hayashi, S., Chang, S. Y., Chang, S., and Wu, H. C. (1986).J. Bacteriol. 165, 678–681.

    Google Scholar 

  • Heacock, P. N., and Dowhan, W. (1989).J. Biol. Chem. 264, 14927–14977.

    Google Scholar 

  • Hirota, Y., Suzuki, H., Nishimura, Y., and Yasuda, S. (1977).Proc. Natl. Acad. Sci. USA 74, 1417–1420.

    Google Scholar 

  • Howard, S. P., Cavard, D., and Lazdunski, C. (1989).J. Bacteriol. 171, 410–418.

    Google Scholar 

  • Huang, J., Sukordhaman, M., and Schell, M. A. (1989).J. Bacteriol. 171, 3767–3774.

    Google Scholar 

  • Huang, Y. X., Ching, G., and Inouye, M. (1983).J. Biol. Chem. 258, 8139–8145.

    Google Scholar 

  • Hussain, M., Ichihara, S., and Mizushima, S. (1982).J. Biol. Chem. 257, 5177–5182.

    Google Scholar 

  • Hussain, M., Pastor, F. I. J., and Lampen, J. O. (1987).J. Bacteriol. 169, 579–586.

    Google Scholar 

  • Ichihara, S., Hussain, M., and Mizushima, S. (1981).J. Biol. Chem. 256, 3126–3129.

    Google Scholar 

  • Innis, M. A., Tokunaga, M., Williams, M. E., Loranger, J. M., Chang, S. Y., Chang, S., and Wu, H. C. (1984).Proc. Natl. Acad. Sci. USA 81, 3708–3712.

    Google Scholar 

  • Inouye, M., Shaw, I., and Shen, C. (1972).J. Biol. Chem. 247, 8154–8159.

    Google Scholar 

  • Inouye, S., Wang, S., Sekizawa, J., Halegoua, S., and Inouye, M. (1977).Proc. Natl. Acad. Sci. USA 74, 1004–1008.

    Google Scholar 

  • Inouye, S., Duffaud, G., and Inouye, M. (1986).J. Biol. Chem. 261, 10970–10975.

    Google Scholar 

  • Inukai, M., Takeuchi, M., Shimizu, K., and Arai, M. (1978).J. Antibiot. 31, 1203–1205.

    Google Scholar 

  • Isaki, L., Kawakami, M., Beers, R., Hom, K., and Wu, H. C. (1990).J. Bacteriol. 172, 469–472.

    Google Scholar 

  • Ito, K., Wittekind, M., Nomura, M., Shiba, K., Yua, T., Miura, A., and Nashimoto, H. (1983).Cell 32, 789–797.

    Google Scholar 

  • Jackowski, S., and Rock, C. O. (1986).J. Biol. Chem. 261, 11328–11333.

    Google Scholar 

  • Jung, J. U., Gutierrez, C., and Villarejo, M. R. (1989).J. Bacteriol. 171, 511–520.

    Google Scholar 

  • Katsuragi, N., Takizawa, N., and Murooka, Y. (1987).J. Bacteriol. 169, 2301–2306.

    Google Scholar 

  • Klein, P., Somorjai, R. L., and Lau, P. C. K. (1989).Protein Eng. 2, 15–20.

    Google Scholar 

  • Kumamoto, C. A., and Beckwith, J. (1983).J. Bacteriol. 154, 253–260.

    Google Scholar 

  • Lai, J. S., and Wu, H. C. (1980).J. Bacteriol. 144, 451–453.

    Google Scholar 

  • Lai, J. S., Philbrick, W. M., and Wu, H. C. (1980).J. Biol. Chem. 255, 5384–5387.

    Google Scholar 

  • Leduc, M., Joseleau-Petit, D., and Rothfield, L. I. (1989).FEMS Microbiol. Lett. 60, 11–14.

    Google Scholar 

  • Luirink, J., Watanabe, T., Wu, H. C., Stegehuis, F., de Graaf, F. K., and Oudega, B. (1987).J. Bacteriol. 169, 2245–2250.

    Google Scholar 

  • Luirink, J., Clark, D. M., Ras, J., Verschoor, E. T., Stegehuis, F., de Graaf, F. K., and Oudega, B. (1989).J. Bacteriol. 171, 2673–2679.

    Google Scholar 

  • Magee, A. I., and Schlesinger, M. J. (1982).Biochim. Biophys. Acta 694, 279–289.

    Google Scholar 

  • McLaughlin, J. R., Murray, C. L., and Rabinowitz, J. C. (1981).J. Biol. Chem. 256, 11283–11291.

    Google Scholar 

  • Millan, J. L. S., Boyd, D., Dalley, R., Wickner, W., and Beckwith, J. (1989).J. Bacteriol. 171, 5536–5541.

    Google Scholar 

  • Miller, K. W., Bouvier, J., Stragier, P., and Wu, H. C. (1987).J. Biol. Chem. 262, 7391–7397.

    Google Scholar 

  • Minkley, E., Jr. (1984).J. Bacteriol. 158, 464–473.

    Google Scholar 

  • Miyazaki, C., Kuroda, M., Ohta, A., and Shibuya, I. (1985).Proc. Natl. Acad. Sci. USA 82, 7530–7534.

    Google Scholar 

  • Müller, M., and Blobel, G. (1984).Proc. Natl. Acad. Sci. USA 81, 7737–7741.

    Google Scholar 

  • Nakamura, K., and Inouye, M. (1979).Cell 18, 1109–1117.

    Google Scholar 

  • Nakamura, K., and Inouye, M. (1980).Proc. Natl. Acad. Sci. USA 77, 1369–1373.

    Google Scholar 

  • Neugebauer, K., Sprengel, R., and Schaller, H. (1981).Nucleic Acids Res. 9, 2577–2588.

    Google Scholar 

  • Novak, P., and Dev, I. K. (1988).J. Bacteriol. 170, 5067–5075.

    Google Scholar 

  • Ogata, R. T., Winters, G., and Levine, R. P. (1982).J. Bacteriol. 151, 819–827.

    Google Scholar 

  • Oka, A., Nomura, N., Morita, M., Sugisaka, H., Sugimoto, K., and Takanami, M. (1979).Mol. Gen. Gent. 172, 151–159.

    Google Scholar 

  • Oliver, D. B., and Beckwith, J. (1981).Cell 25, 765–772.

    Google Scholar 

  • Oudega, B., Ykema, A., Stegehuis, F., and de Graaf, F. K. (1984).FEMS Microbiol. Lett. 22, 101–108.

    Google Scholar 

  • Palva, E. T. (1979).Eur. J. Biochem. 93, 495–503.

    Google Scholar 

  • Perlman, D., and Halvorson, H. O. (1983).J. Mol. Biol. 167, 391–409.

    Google Scholar 

  • Pollitt, S., and Inouye, M. (1986). InBacterial Outer Membranes as Model Systems. (Inouye, M., ed.), Wiley, New York, pp. 117–139.

    Google Scholar 

  • Pugsley, A. P., Chapon, C., and Schwartz, M. (1986).J. Bacteriol. 166, 1083–1088.

    Google Scholar 

  • Ray, T. K., and Cronan, J. E., Jr. (1976).Proc. Natl. Acad. Sci. USA 73, 4373–4378.

    Google Scholar 

  • Regue, M., Remenick, J., Tokunaga, M., Mackie, G. A., and Wu, H. C. (1984).J. Bacteriol. 156, 632–635.

    Google Scholar 

  • Rock, C. O., and Cronan, J. E., Jr. (1979).J. Biol. Chem. 254, 7116–7122.

    Google Scholar 

  • Sarvas, M., and Palva, I. A. (1983).J. Bacteriol. 155, 657–663.

    Google Scholar 

  • Schatz, P. J., Riggs, P. D., Jacq, A., Fath, M. J., and Beckwith, J. (1989).Genes Dev. 3, 1035–1044.

    Google Scholar 

  • Silver, P., and Wickner, W. (1983).J. Bacteriol. 154, 569–572.

    Google Scholar 

  • Soto-Gil, R. W., and Zyskind, J. W. (1989).J. Biol. Chem. 264, 14778–14783.

    Google Scholar 

  • Suzuki, H., Nishimura, Y., Yasuda, S., Nishimura, A., Yamada, M. and Hirota, Y. (1978).Mol. Gen. Genet. 167, 1–9.

    Google Scholar 

  • Suzuki, T., Itoh, A., Ichihara, S., and Mizushima, S. (1987).J. Bacteriol. 169, 2523–2528.

    Google Scholar 

  • Swancutt, M. A., Riley, B. S., Radolf, J. D., and Norgard, M. V. (1989).Infect. Immun. 57, 3314–3323.

    Google Scholar 

  • Takase, I., Ishino, F., Wachi, M., Kamata, H., Doi, M., Asoh, S., Matsuzawa, H., Ohta, T., and Matsuhashi, M. (1987).J. Bacteriol. 169, 5692–5699.

    Google Scholar 

  • Tian, G., Wu, H. C., Ray, P., and Tai, P. C. (1989).J. Bacteriol. 171, 1987–1997.

    Google Scholar 

  • Tokunaga, H., and Wu, H. C. (1984).J. Biol. Chem. 259, 6098–6104.

    Google Scholar 

  • Tokunaga, M., Tokunaga, H., and Wu, H. C. (1982).Proc. Natl. Acad. Sci. USA 79, 2255–2259.

    Google Scholar 

  • Tokunaga, M., Loranger, J. M., and Wu, H. C. (1983).J. Biol. Chem. 258, 12102–12105.

    Google Scholar 

  • Towler, D. A., Eubanks, S. R., Towery, D. S., Adams, S. P., and Glaser, L. (1987).J. Biol. Chem. 262, 1030–1036.

    Google Scholar 

  • von Heijne, G. (1983).Eur. J. Biochem. 133, 17–21.

    Google Scholar 

  • von Heijne, G. (1985).J. Mol. Biol. 184, 99–105.

    Google Scholar 

  • von Heijne, G. (1989).Protein Eng. 2, 531–534.

    Google Scholar 

  • Watanabe, T., Hayashi, S., and Wu, H. C. (1988).J. Bacteriol. 170, 4001–4007.

    Google Scholar 

  • Watson, R. J., Lau, P. C. K., Vernet, T., and Visentin, P. (1984).Gene 29, 175–184.

    Google Scholar 

  • Weyer, K. A., Schafer, W., Lottspeich, F., and Michel, H. (1987).Biochemistry 26, 2909–2914.

    Google Scholar 

  • Wolfe, P. B., Silver, P., and Wickner, W. (1982).J. Biol. Chem. 257, 7898–7902.

    Google Scholar 

  • Wolfe, P. B., Wickner, W., and Goodman, J. M. (1983).J. Biol. Chem. 288, 12073–12080.

    Google Scholar 

  • Wu, H. C. (1987). InBacterial Outer Membranes as Model Systems (Inouye, M., ed.), Wiley, New York, pp. 37–71.

    Google Scholar 

  • Yamagata, H., Nakamura, K., and Inouye, M. (1981).J. Biol. Chem. 256, 2194–2198.

    Google Scholar 

  • Yamagata, H., Taguchi, N., Daishima, K., and Mizushima, S. (1983).Mol. Gen. Genet. 192, 10–14.

    Google Scholar 

  • Yamaguchi, K., and Inouye, M. (1988).J. Bacteriol. 170, 3747–3749.

    Google Scholar 

  • Yamaguchi, K., Yu, F., and Inouye, M. (1988).Cell 53, 423–432.

    Google Scholar 

  • Yu, F., Yamada, H., Daishima, K., and Mizushima, S. (1984).FEBS Lett. 173, 264–268.

    Google Scholar 

  • Yu, F., Inouye, S., and Inouye, M. (1986).J. Biol. Chem. 261, 2284–2288.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hayashi, S., Wu, H.C. Lipoproteins in bacteria. J Bioenerg Biomembr 22, 451–471 (1990). https://doi.org/10.1007/BF00763177

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00763177

Key Words

Navigation