Skip to main content

Advertisement

Log in

Cell aggregation of Pseudomonas aeruginosa strain PAO1 as an energy-dependent stress response during growth with sodium dodecyl sulfate

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Pseudomonas aeruginosa strain PAO1 grew with the detergent sodium dodecyl sulfate (SDS). The growth started with the formation of macroscopic cell aggregates which consisted of respiring cells embedded in an extracellular matrix composed of acidic polysaccharides and DNA. Damaged and uncultivable cells accumulated in these aggregates compared to those cells that remained suspended. We investigated the response of suspended cells to SDS under different conditions. At high energy supply, the cells responded with a decrease in optical density and in viable counts, release of protein and DNA, and formation of macroscopic aggregates. This response was not observed if the energy supply was reduced by inhibiting respiration with KCN, or if cells not induced for SDS degradation were exposed to SDS. Exposure to SDS caused cell lysis without aggregation if cells were completely deprived of energy, either by applying anoxic conditions, by addition of CCCP, or by addition of KCN to a mutant defective in cyanide-insensitive respiration. Aggregated cells showed a more than 100-fold higher survival rate after exposure to SDS plus CCCP than suspended cells. Our results demonstrate that cell aggregation is an energy-dependent response of P. aeruginosa to detergent stress which might serve as a survival strategy during growth with SDS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CCCP:

Carbonyl cyanide m-chlorophenyl hydrazone

CFU:

Colony forming units

CTC:

5-Cyano-2,3-ditolyl tetrazolium chloride

OD600 :

Optical density at 600 nm

SDS:

Sodium dodecyl sulfate

ROS:

Reactive oxygen species

References

  • Alonso A, Rojo F, Martinez JL (1999) Environmental and clinical isolates of Pseudomonas aeruginosa show pathogenic and biodegradative properties irrespective of their origin. Environ Microbiol 1:421–430

    Article  PubMed  CAS  Google Scholar 

  • Beveridge TJ (1999) Structures of gram-negative cell walls and their derived membrane vesicles. J Bacteriol 181:4725–4733

    PubMed  CAS  Google Scholar 

  • Bossier P, Verstraete W (1996a) Comamonas testosteroni colony phenotype influences exopolysaccharide production and coaggregation with yeast cells. Appl Environ Microbiol 62:2687–2691

    CAS  Google Scholar 

  • Bossier P, Verstraete W (1996b) Triggers for microbial aggregation in activated sludge? Appl Microbiol Biotechnol 45:1–6

    Article  CAS  Google Scholar 

  • Cooper M, Tavankar GR, Williams HD (2003) Regulation of expression of the cyanide-insensitive terminal oxidase in Pseudomonas aeruginosa. Microbiology 149:1275–1284

    Article  PubMed  CAS  Google Scholar 

  • Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322

    Article  PubMed  CAS  Google Scholar 

  • Cunningham L, Pitt M, Williams HD (1997) The cioAB genes from Pseudomonas aeruginosa code for a novel cyanide-insensitive terminal oxidase related to the cytochrome bd quinol oxidases. Mol Microbiol 24:579–591

    Article  PubMed  CAS  Google Scholar 

  • Diggle SP, Winzer K, Lazdunski A, Williams P, Camara M (2002) Advancing the quorum in Pseudomonas aeruginosa: MvaT and the regulation of N-acylhomoserine lactone production and virulence gene expression. J Bacteriol 184:2576–2586

    Article  PubMed  CAS  Google Scholar 

  • Ellis AJ, Hales SG, Ur-Rehman NG, White GF (2002) Novel alkylsulfatases required for biodegradation of the branched primary alkyl sulfate surfactant 2-butyloctyl sulfate. Appl Environ Microbiol 68:31–36

    Article  PubMed  CAS  Google Scholar 

  • Farrell A, Quilty B (2002) Substrate-dependent autoaggregation of Pseudomonas putida CP1 during the degradation of mono-chlorophenols and phenol. J Ind Microbiol Biotechnol 28:316–324

    Article  PubMed  CAS  Google Scholar 

  • Friedman L, Kolter R (2004) Two genetic loci produce distinct carbohydrate-rich structural components of the Pseudomonas aeruginosa biofilm matrix. J Bacteriol 186:4457–4465

    Article  PubMed  CAS  Google Scholar 

  • Gilbert P, Maira-Litran T, McBain AJ, Rickard AH, Whyte FW (2002) The physiology and collective recalcitrance of microbial biofilm communities. Adv Microb Physiol 46:202–256

    PubMed  Google Scholar 

  • Helenius A, Simons K (1975) Solubilization of membranes by detergents. Biochim Biophys Acta 415:29–79

    PubMed  CAS  Google Scholar 

  • Hoben HJ, Somasegaran P (1982) Comparison of the pour, spread, and drop plate methods for enumeration of Rhizobium spp. in inoculants made from presterilized peat. Appl Environ Microbiol 44:1246–1247

    PubMed  Google Scholar 

  • Hoffman LR, D’Argenio DA, MacCoss MJ, Zhang Z, Jones RA, Miller SI (2005) Aminoglycoside antibiotics induce bacterial biofilm formation. Nature 436:1171–1175

    Article  PubMed  CAS  Google Scholar 

  • Hummerjohann J, Laudenbach S, Retey J, Leisinger T, Kertesz MA (2000) The sulfur-regulated arylsulfatase gene cluster of Pseudomonas aeruginosa, a new member of the cys regulon. J Bacteriol 182:2055–2058

    Article  PubMed  CAS  Google Scholar 

  • Jacobs MA et al (2003) Comprehensive transposon mutant library of Pseudomonas aeruginosa. Proc Natl Acad Sci USA 100:14339–14344

    Article  PubMed  CAS  Google Scholar 

  • Joergensen F et al (1999) RpoS-dependent stress tolerance in Pseudomonas aeruginosa. Microbiology 145:835–844

    Article  Google Scholar 

  • Kadurugamuwa JL, Beveridge TJ (1995) Virulence factors are released from Pseudomonas aeruginosa in association with membrane vesicles during normal growth and exposure to gentamicin: a novel mechanism of enzyme secretion. J Bacteriol 177:3998–4008

    PubMed  CAS  Google Scholar 

  • Lewis K (2001) Riddle of biofilm resistance. Antimicrob Agents Chemother 45:999–1007

    Article  PubMed  CAS  Google Scholar 

  • Lyczak JB, Cannon CL, Pier GB (2000) Establishment of Pseudomonas aeruginosa infection: lessons from a versatile opportunist. Microbes Infect 2:1051–1060

    Article  PubMed  CAS  Google Scholar 

  • Marchesi JR, Owen SA, White GF, House WA, Russell NJ (1994) SDS-degrading bacteria attach to riverine sediment in response to the surfactant or its primary biodegradation product dodecan-1-ol. Microbiology 140:2999–3006

    PubMed  CAS  Google Scholar 

  • Matsukawa M, Greenberg EP (2004) Putative exopolysaccharide synthesis genes influence Pseudomonas aeruginosa biofilm development. J Bacteriol 186:4449–4456

    Article  PubMed  CAS  Google Scholar 

  • Nickerson KW, Aspedon A (1992) Detergent-shock response in enteric bacteria. Mol Microbiol 6:957–961

    Article  PubMed  CAS  Google Scholar 

  • Nikaido H, Vaara M (1985) Molecular basis of bacterial outer membrane permeability. Microbiol Rev 49:1–32

    PubMed  CAS  Google Scholar 

  • Nyström T (2005) Role of oxidative carbonylation in protein quality control and senescence. Embo J 24:1311–1317

    Article  PubMed  CAS  Google Scholar 

  • Payne WJ, Feisal VE (1963) Bacterial utilization of dodecyl sulfate and dodecyl benzene sulfonate. Appl Microbiol 11:339–344

    PubMed  CAS  Google Scholar 

  • Poole K (2004) Efflux-mediated multiresistance in Gram-negative bacteria. Clin Microbiol Infect 10:12–36

    Article  PubMed  CAS  Google Scholar 

  • Rajagopal S, Sudarsan N, Nickerson KW (2002) Sodium dodecyl sulfate hypersensitivity of clpP and clpB mutants of Escherichia coli. Appl Environ Microbiol 68:4117–4121

    Article  PubMed  CAS  Google Scholar 

  • Rajagopal S, Eis N, Nickerson KW (2003) Eight gram-negative bacteria are 10,000 times more sensitive to cationic detergents than to anionic detergents. Can J Microbiol 49:775–779

    Article  PubMed  CAS  Google Scholar 

  • Rusconi F, Valton E, Nguyen R, Dufourc E (2001) Quantification of sodium dodecyl sulfate in microliter-volume biochemical samples by visible light spectroscopy. Anal Biochem 295:31–37

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Schleheck D, Dong W, Denger K, Heinzle E, Cook AM (2000) An alpha-proteobacterium converts linear alkylbenzenesulfonate surfactants into sulfophenylcarboxylates and linear alkyldiphenyletherdisulfonate surfactants into sulfodiphenylethercarboxylates. Appl Environ Microbiol 66:1911–1916

    Article  PubMed  CAS  Google Scholar 

  • Scott MJ, Jones MN (2000) The biodegradation of surfactants in the environment. Biochim Biophys Acta 1508:235–251

    Article  PubMed  CAS  Google Scholar 

  • Spoering AL, Lewis K (2001) Biofilms and planktonic cells of Pseudomonas aeruginosa have similar resistance to killing by antimicrobials. J Bacteriol 183:6746–6751

    Article  PubMed  CAS  Google Scholar 

  • Stavskaia SS, Nikovskaia GN, Shamolina II, Samoilenko LS, Grigor’eva TI, Lusta KA (1989) [Degradation of alkylsulfates by a Pseudomonas aeruginosa culture immobilized on a polyvinyl alcohol fiber]. Mikrobiologiia 58:607–610

    PubMed  CAS  Google Scholar 

  • Steinberger RE, Holden PA (2005) Extracellular DNA in single- and multiple-species unsaturated biofilms. Appl Environ Microbiol 71:5404–5410

    Article  PubMed  CAS  Google Scholar 

  • Stoodley P, Sauer K, Davies DG, Costerton JW (2002) Biofilms as complex differentiated communities. Annu Rev Microbiol 56:187–209

    Article  PubMed  CAS  Google Scholar 

  • Suh SJ, Silo-Suh L, Woods DE, Hassett DJ, West SE, Ohman DE (1999) Effect of rpoS mutation on the stress response and expression of virulence factors in Pseudomonas aeruginosa. J Bacteriol 181:3890–3897

    PubMed  CAS  Google Scholar 

  • Sutherland I (2001) Biofilm exopolysaccharides: a strong and sticky framework. Microbiology 147:3–9

    PubMed  CAS  Google Scholar 

  • Thomas OR, White GF (1989) Metabolic pathway for the biodegradation of sodium dodecyl sulfate by Pseudomonas sp. C12B. Biotechnol Appl Biochem 11:318–327

    PubMed  CAS  Google Scholar 

  • Webb JS et al (2003) Cell death in Pseudomonas aeruginosa biofilm development. J Bacteriol 185:4585–4592

    Article  PubMed  CAS  Google Scholar 

  • Whitchurch CB, Tolker-Nielsen T, Ragas PC, Mattick JS (2002) Extracellular DNA required for bacterial biofilm formation. Science 295:1487

    Article  PubMed  CAS  Google Scholar 

  • Widdel F, Pfennig N (1981) Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. I. Isolation of new sulfate-reducing bacteria enriched with acetate from saline environments. Description of Desulfobacter postgatei gen. nov., sp. nov. Arch Microbiol 129:395–400

    Article  PubMed  CAS  Google Scholar 

  • Wozniak DJ et al (2003) Alginate is not a significant component of the extracellular polysaccharide matrix of PA14 and PAO1 Pseudomonas aeruginosa biofilms. Proc Natl Acad Sci USA 100:7907–7912

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors appreciate experimental support from S. Weinitschke and valuable discussions with A. Cook and D. Schleheck. This study was supported by a grant of the Deutsche Forschungsgemeinschaft, (Bonn) to B.P. (PH71/2-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bodo Philipp.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klebensberger, J., Rui, O., Fritz, E. et al. Cell aggregation of Pseudomonas aeruginosa strain PAO1 as an energy-dependent stress response during growth with sodium dodecyl sulfate. Arch Microbiol 185, 417–427 (2006). https://doi.org/10.1007/s00203-006-0111-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-006-0111-y

Keywords

Navigation