Skip to main content
Log in

Two of the three groEL homologues in Rhizobium leguminosarum are dispensable for normal growth

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Although many bacteria contain only a single groE operon encoding the essential chaperones GroES and GroEL, examples of bacteria containing more than one groE operon are common. The root-nodulating bacterium Rhizobium leguminosarum contains at least three operons encoding homologues to Escherichia coli GroEL, referred to as Cpn60.1, Cpn60.2 and Cpn60.3, respectively. We report here a detailed analysis of the requirement for and relative levels of these three proteins. Cpn60.1 is present at higher levels than Cpn60.2, and Cpn60.3 protein could not be detected under any conditions although the cpn60.3 gene is transcribed under anaerobic conditions. Insertion mutations could not be constructed in cpn60.1 unless a complementing copy was present, showing that this gene is essential for growth under the conditions used here. Both cpn60.2 and cpn60.3 could be inactivated with no loss of viability, and a double cpn60.2 cpn60.3 mutant was also constructed which was fully viable. Thus only Cpn60.1 is required for growth of this organism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aiba H, Adhya S, de Crombrugghe B (1981) Evidence for two functional gal promoters in intact Escherichia coli cells. J Biol Chem 156:11905–11910

    Google Scholar 

  • Ampe F, Kiss E, Sabourdy F, Batut J (2003) Transcriptome analysis of Sinorhizobium meliloti during symbiosis. Genome Biol 4:R15

    PubMed  Google Scholar 

  • Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (1987) Current protocols in molecular biology. Wiley, New York

    Google Scholar 

  • Babst M, Hennecke H, Fischer HM (1996) Two different mechanisms are involved in the heat-shock regulation of chaperonin gene expression in Bradyrhizobium japonicum. Mol Microbiol 19:827–839

    Google Scholar 

  • Beringer JE (1974) R factor transfer in Rhizobium. J Gen Microbiol 84:188–198

    CAS  PubMed  Google Scholar 

  • Beynon JL, Beringer JE, Johnston AWB (1980) Plasmids and host range in Rhizobium leguminosarum and Rhizobium phaseoli. J Gen Microbiol 120:421–429

    Google Scholar 

  • Buchner J (1996) Supervising the fold: functional principles of molecular chaperones. FASEB J 10:10–19

    Google Scholar 

  • Bukau B (1993) Regulation of the Escherichia coli heat shock response. Mol Microbiol 9:671–680

    Google Scholar 

  • Chitnis PR, Nelson N (1991) Molecular cloning of the genes encoding two chaperone proteins of the cyanbacterium Synechocystis-sp PCC 6803. J Biol Chem 266:58–65

    Google Scholar 

  • Coates AR, Shinnick TM, Ellis RJ (1993) Chaperonin nomenclature. Mol Microbiol 8:787

    Google Scholar 

  • De Léon P, Marco S, Isiegas C, Marina A, Carrascosa JL, Mellado RP (1997) Streptomyces lividans groES, groEL1, and groEL2 genes. Microbiology 143:3563–3571

    Google Scholar 

  • Devereux J, Haerbli P, Smithies O (1984) A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12:387–395

    CAS  PubMed  Google Scholar 

  • Downie JA, Knight CD, Johnston AWB (1985) Identification of genes and gene products involved in nodulation of peas by Rhizobium leguminosarum. Mol Gen Genet 198:255–262

    Google Scholar 

  • Duchêne AM, Kieser HM, Hopwood DA, Thompson CJ, Mazodier P (1994) Molecular characterisation of two groEL genes in Streptomyces coelicolor A3(2). Gene 144:97–105

    Google Scholar 

  • Ellis RJ (1997) Molecular chaperones: avoiding the crowd. Curr Biol 7:R531–R533

    Google Scholar 

  • Ellis RJ, Hartl FU (1996) Protein folding in the cell: competing models of chaperonin function. FASEB J 10:20–26

    CAS  PubMed  Google Scholar 

  • Ewalt KL, Hendrick JP, Houry WA, Hartl FU (1997) In vivo observation of polypeptide flux through the bacterial chaperonin system. Cell 90:491–500

    Google Scholar 

  • Fayet O, Ziegelhoffer T, Georgopoulos C (1989) The groES and groEL heat shock products of Escherichia coli are essential for bacterial growth at all temperatures. J Bacteriol 171:1379–1385

    CAS  PubMed  Google Scholar 

  • Fenton WA, Horwich AL (1997) GroEL mediated protein folding. Protein Sci 6:743–760

    CAS  PubMed  Google Scholar 

  • Fischer HM, Babst M, Kaspar T, Acuña G, Arigoni F, Hennecke H (1993) One member of a groESL-like chaperonin multigene family in Bradyrhizobium japonicum is co-regulated with symbiotic nitrogen fixation genes. EMBO J 12:2901–2912

    CAS  PubMed  Google Scholar 

  • Fischer HM, Schneider K, Babst M, Hennecke H (1999) GroEL chaperonins are required for the formation of a functional nitrogenase in Bradyrhizobium japonicum. Arch Microbiol 171:279–289

    Google Scholar 

  • Furuki M, Tanaka N, Hiyama T, Nakamoto H (1996) Cloning, characterization and functional analysis of groEL-like gene from thermophilic cyanobacterium Synechococcus vulcanus, which does not form an operon with groES. Biochim Biophys Acta 1294:106–110

    Google Scholar 

  • Galibert F, Finan TM, Long SR, Puhler A, Abola P, Ampe F, Barloy-Hubler F, Barnett MJ, Becker A, Boistard P, Bothe G, Boutry M, Bowser L, Buhrmester J, Cadieu E, Capela D, Chain P, Cowie A, Davis RW, Dreano S, Federspiel NA, Fisher RF, Gloux S, Godrie T, Goffeau A, Golding B, Gouzy J, Gurjal M, Hernandez-Lucas I, Hong A, Huizar L, Hyman RW, Jones T, Kahn D, Kahn ML, Kalman S, Keating DH, Kiss E, Komp C, Lelaure V, Masuy D, Palm C, Peck MC, Pohl TM, Portetelle D, Purnelle B, Ramsperger U, Surzycki R, Thebault P, Vandenbol M, Vorholter FJ, Weidner S, Wells DH, Wong K, Yeh KC, Batut J (2001) The composite genome of the legume symbiont Sinorhizobium meliloti. Science 293:668–672

    CAS  PubMed  Google Scholar 

  • George R (2000) In vitro and in vivo characterisation of the three GroEL homologues from Rhizobium leguminosarum bv. viciae. PhD Thesis, University of Birmingham

  • George R, Kelly SM, Price NC, Erbse A, Fisher M, Lund PA (2004) Three GroEL homologues from Rhizobium leguminosarum have distinct in vitro properties. Biochem Biophys Res Commun 324:822–828

    Google Scholar 

  • Guglielmi G, Mazodier P, Thompson CJ, Davies J (1991) A survey of the heat shock response in four Streptomyces species reveals two groEL-like genes and three GroEL-like proteins in Streptomyces albus. J Bacteriol 173:7374–7381

    Google Scholar 

  • Hartl FU (1996) Molecular chaperones in cellular protein folding. Nature 381:571–580

    Article  CAS  PubMed  Google Scholar 

  • Hartl FU, Hlodan R, Langer T (1994) Molecular chaperones in protein folding: the art of avoiding sticky situations. Trends Biochem Sci 19:20–25

    Google Scholar 

  • Houry WA, Frishman D, Eckerson C, Lottspeich F, Hartl FU (1999) Identification of in vivo substrates of the chaperonin GroEL. Nature 402:147–154

    Google Scholar 

  • Johnston AWB, Beringer JE (1975) Identification of the Rhizobium strains in pea root nodules using genetic markers. J Gen Microbiol 87:343–350

    Google Scholar 

  • Kaneko T, Nakamura Y, Sato S, Asamizu E, Kato T, Sasamoto S, Watanabe A, Idesawa K, Ishikawa A, Kawashima K, Kimura T, Kishida Y, Kiyokawa C, Kohara M, Matsumoto M, Matsuno A, Mochizuki Y, Nakayama S, Nakazaki N, Shimpo S, Sugimoto M, Takeuchi C, Yamada M, Tabata S (2000) Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti. DNA Res 7:331–338

    CAS  PubMed  Google Scholar 

  • Kaneko T, Nakamura Y, Sato S, Minamisawa K, Uchiumi T, Sasamoto S, Watanabe A, Idesawa K, Iriguchi M, Kawashima K, Kohara M, Matsumoto M, Shimpo S, Tsuruoka H, Wada T, Yamada M, Tabata S (2002) Complete genomic sequence of nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum USDA110. DNA Res 9:225–256

    Google Scholar 

  • Karunakaran KP, Noguchi Y, Read TD, Cherkasov A, Kwee J, Shen C, Nelsone CC, Brunham RC (2003) Molecular analysis of the multiple GroEL proteins of Chlamydiae. J Bacteriol 185:1958–1966

    Google Scholar 

  • Kondorosi A, Kondorosi E, Pankhurst CE, Broughton WE, Banzalvi Z (1982) Mobilization of a Rhizobium meliloti megaplasmid carrying nodulation and nitrogen fixation genes into other rhizobia and Agrobacterium. Mol Gen Genet 188:433–439

    Google Scholar 

  • Kong TH, Coates ARM, Butcher PD, Hickman CJ, Shinnick TM (1993) Mycobacterium tuberculosis expresses two chaperonin-60 homologues. Proc Natl Acad Sci USA 90:2608–2612

    Google Scholar 

  • Kusukawa N, Yura T (1988) Heat shock protein GroE of Escherichia coli: key protective roles against thermal stress. Genes Dev 2:874–882

    Google Scholar 

  • Lamb JW, Hombrecher G, Johnston AWB (1982) Plasmid-determined nodulation and nitrogen-fixation abilities in Rhizobium phaseoli. Mol Gen Genet 186:449–452

    Google Scholar 

  • Lee WT, Terlesky KC, Tabita FR (1997) Cloning and characterisation of two groESL operons of Rhodobacter sphaeroides: transcriptional regulation of the heat induced groESL operon. J Bacteriol 179:487–495

    Google Scholar 

  • Lehel C, Los D, Wada H, Györgyei J, Horváth I, Kovács E, Murata N, Vigh L (1993) A second groEL-like gene, organised in a groESL operon, is present in the genome of Synechocystis sp PCC 6803. J Biol Chem 268:1799–1804

    CAS  PubMed  Google Scholar 

  • Li M, Wong SL (1992) Cloning and characterization of the groESL operon from Bacillus subtilis. J Bacteriol 174:3981–3992

    Google Scholar 

  • Lorimer GH (1996) A quantitative assessment of the role of chaperonin proteins in protein folding in vivo. FASEB J 10:5–9

    Google Scholar 

  • Lund PA (2001) Microbial molecular chaperones. Adv Microb Physiol 44:93–140

    Article  CAS  PubMed  Google Scholar 

  • Ma Q-S, Johnston AWB, Hombrecher G, Downie JA (1982) Molecular genetics of mutants of Rhizobium leguminosarum which fail to fix nitrogen. Mol Gen Genet 187:166–171

    Google Scholar 

  • Mazodier P, Guglielmi G, Davies J, Thompson CJ (1991) Characterisation of the groEL-like genes in Streptomyces albus. J Bacteriol 173:7382–7386

    Google Scholar 

  • Mogk A, Homuth G, Scholz C, Kim L, Schmid FX, Schumann W (1997) The GroE chaperonin machine is a major modulator of the CIRCE heat shock regulon of Bacillus subtilis. EMBO J 16:4579–4590

    Google Scholar 

  • Narberhaus F (1999) Negative regulation of bacterial heat shock genes. Mol Microbiol 31:1–8

    Google Scholar 

  • Neidhardt FC, VanBogelen RA (1987) Heat shock response. In: Neidhardt FC, Ingraham JL, Low KB, Magasanik B, Schaechter M, Umbarger HE (eds) Escherichia coli and Salmonella typhimurium, cellular and molecular biology. American Society of Microbiology, Washington DC, pp 1334–1345

    Google Scholar 

  • Ogawa J, Long SR (1995) The Rhizobium meliloti groELc locus is required for regulation of early nod genes by the transcription activator NodD. Genes Dev 9:714–729

    Google Scholar 

  • Oke V, Long SR (1999) Bacterial genes induced within the nodule during the Rhizobium-legume symbiosis. Mol Microbiol 32:837–849

    Article  CAS  PubMed  Google Scholar 

  • Puskas LG, Nagy ZB, Kelemen JZ, Ruberg S, Bodogai M, Becker A, Dusha I (2004) Transcriptional modulating effect of ntrR under microaerobiosis in Sinorhizobium meliloti. Mol Genet Genom 272:275–289

    Google Scholar 

  • Quandt J, Hynes MF (1993) Versatile suicide vectors which allow direct selection for gene replacement in Gram-negative bacteria. Gene 127:15–21

    Google Scholar 

  • Ranson NA, White HE, Saibil HR (1998) Chaperonins. Biochem J 333:233–242

    CAS  PubMed  Google Scholar 

  • Rinke de Wit T, Bekelie S, Osland A, Miko TL, Hermans PWM, van Soolingen D, Drijfhout J-W, Schöningh R, Janson AAM, Thole JER (1992) Mycobacteria contain two groEL genes: the second Mycobacterium leprae groEL gene is arranged in an operon with groES. Mol Microbiol 6:1995–2007

    Google Scholar 

  • Rodríguez-Quiñones F, Fernández-Burriel M, Banzalvi Z, Megías M, Kondorosi A (1989) Identification of a conserved, reiterated DNA region that influences the efficiency of nodulation in strain RS1051 of Rhizobium leguminosarum bv. trifolii. Mol Plant Microbe Interact 2:75–83

    Google Scholar 

  • Rusanganwa E, Gupta RS (1993) Cloning and characterisation of multiple groEL chaperonin genes in Rhizobium meliloti. Gene 126:67–75

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Segal G, Ron EZ (1995) The groESL operon of Agrobacterium tumefaciens—evidence for heat shock-dependent messenger RNA cleavage. J Bacteriol 177:750–757

    Google Scholar 

  • Servant P, Thompson C, Mazodier P (1993) Use of new Escherichia coli/–Streptomyces conjugative vectors to probe the functions of the two groEL-like genes of Streptomyces albus G by gene disruption. Gene 134:25–32

    Google Scholar 

  • Simon R, Priefer U, Pühler A (1983) A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram-negative bacteria. Biotechnology 1:784–791

    CAS  Google Scholar 

  • Spaink HP, Okker RHJ, Wijiffelman CA, Pees E, Lugtenberg BJJ (1987) Promoters in the nodulation region of Rhizobium leguminosarum Sym plasmid pRL1JI. Plant Mol Biol 9:27–39

    Google Scholar 

  • Straus DB, Walter WA, Gross CA (1987) The heat shock response of Escherichia coli is regulated by changes in the concentration of sigma-32. Nature 329:348–351

    Google Scholar 

  • Tanaka N, Hiyama T, Nakamoto H (1997) Cloning, characterisation and functional analysis of groESL operon from thermophilic cyanobacterium Synechococcus vulcanus. Biochim Biophys Acta 1343:335–348

    Google Scholar 

  • Viitanen PV, Gatenby AA, Lorimer GH (1992) Purified chaperonin 60 (GroEL) interacts with the non-native states of a multitude of Escherichia coli proteins. Protein Sci 1:363–369

    Google Scholar 

  • Wallington EJ, Lund PA (1994) Rhizobium leguminosarum contains multiple chaperonin (cpn60) genes. Microbiology 140:113–122

    Google Scholar 

  • Yura T, Nakahigashi K (1999) Regulation of the heat shock response. Curr Opin Microbiol 2:153–158

    Google Scholar 

  • Zeilstra-Ryalls J, Fayet O, Georgopoulos C (1991) The universally conserved GroE (Hsp60) chaperonins. Ann Rev Microbiol 45:301–325

    Google Scholar 

  • Zuber U, Schumann W (1994) CIRCE, a novel heat shock element involved in regulation of heat shock operon dnaK of Bacillus subtilis. J Bacteriol 176:1359–1363

    Google Scholar 

Download references

Acknowledgements

We are grateful to the Biotechnology and Biological Sciences Research Council and to NATO, for financial support; to David Winwood for the construction of plasmid pDW2; and to Tristan Magnay for construction of pTM1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Lund.

Additional information

Dedicated to the memory of Professor V. Javier Benedí, 1957–2002

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodríguez-Quiñones, F., Maguire, M., Wallington, E.J. et al. Two of the three groEL homologues in Rhizobium leguminosarum are dispensable for normal growth. Arch Microbiol 183, 253–265 (2005). https://doi.org/10.1007/s00203-005-0768-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-005-0768-7

Keywords

Navigation