Skip to main content

Advertisement

Log in

Immunocytochemical localization of membrane-bound ammonia monooxygenase in cells of ammonia oxidizing bacteria

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The intracellular location of the membrane-bound ammonia monooxygenase (AMO) in all genera of ammonia oxidizing bacteria (Nitrosomonas, Nitrosococcus and Nitrosospira) was determined by electron microscopic immunocytochemistry. Polyclonal antibodies recognizing the two subunits, AmoA- and AmoB-proteins, were used for post-embedding labeling. Ultrathin sections revealed that the AmoB-protein was located in all genera on the cytoplasmic membrane. In cells of Nitrosomonas and Nitrosococus additional but less AmoB-labeling was found on the intracytoplasmic membrane (ICM). In contrast to the detection of AmoB-protein, the AmoA-antibodies failed to detect the AmoA-protein. Based on quantitative immunoblots the extent of ICM in Nitrosomonas eutropha was correlated with the amount of AmoA in the cells. The highest extent of ICM and amount of AmoA was found at low ammonium substrate concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AMO:

Ammonia monooxygenase

ICM:

Intracytoplasmic membrane

pMMO:

Particulate methane monooxygenase

References

  • Alzerreca JJ, Norton JM, Klotz MG (1999) The amo operon in marine ammonia-oxidizing γ-proteobacteria. FEMS Microbiol Lett 180:21–29

    Article  PubMed  CAS  Google Scholar 

  • Arciero DM, Hooper AB (1993) Hydroxylamine oxidoreductase from Nitrosomonas europaea is a multimer of an octa-heme subunit. J Biol Chem 268:14645–14654

    PubMed  CAS  Google Scholar 

  • Bédard C, Knowles R (1989) Physiology, biochemistry, and specific inhibitors of CH4, NH +4 , and CO oxidation by methanotrophs and nitrifiers. Microbiol Rev 53:68–84

    PubMed  Google Scholar 

  • Bergmann DJ, Hooper AB (1994) Sequence of the gene, amoB, for the 43 kDa polypeptide of ammonia monooxygenase of Nitrosomonas europaea. Biochim Biophys Res Commun 204:759–762

    Article  CAS  Google Scholar 

  • Bock E, Heinrich G (1969) Morphologische Untersuchungen an den Zellen von Nitrobacter winogradskyi Buch. Arch Mikrobiol 69:149–159

    Article  CAS  Google Scholar 

  • Bock E, Koops HP, Möller UC, Rudert M (1990) A new facultatively nitrite oxidizing bacterium, Nitrobacter vulgaris sp. nov. Arch Microbiol 153:105–110

    Article  Google Scholar 

  • Bowman J (2000) The methanotrophs—the families Methylococcaceae and Methylocystaceae. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes: an evolving electronic database for the microbial community, 3rd edn, release 3.1, Springer, Berlin Heidelberg New York, http://www.link.springer-ny.com/link/service/books/10125

  • Brantner C, Remsen CC, Owen HA, Buchholz LA, Collins MLP (2002) Intracellular localization of the particulate methane monooxygenase and methanol dehydrogenase in Methylomcrobium album BG8. Arch Microbiol 178:59–64

    Article  PubMed  CAS  Google Scholar 

  • Carlemalm E, Garavito RM, Villinger W (1982) Resin development for electron microscopy and an analysis of embedding at low temperature. J Microsc 126:123–143

    CAS  Google Scholar 

  • Fiencke C, Bock E (2004) Genera specific immunofluorescence labeling of ammonia oxidizers with polyclonal antibodies recognizing both subunits of the ammonia monooxygenase. Microbial Ecol 47:374–384

    Article  CAS  Google Scholar 

  • Foster JW, Davis RH (1966) A methane-dependent coccus, with notes on classification and nomenclature of obligate, methane-utilizing bacteria. J Bacteriol 91:1924–1931

    PubMed  CAS  Google Scholar 

  • Harms H, Koops HP, Wehrmann H (1976) An ammonia-oxidizing bacterium, Nitrosovibrio tenuis nov.gen.nov.sp. Arch Microbiol 108:105–111

    Article  PubMed  CAS  Google Scholar 

  • Head IM, Hiorns WD, Embley TM, McCarthy AJ, Saunders JR (1993) The phylogeny of autotrophic ammonia-oxidizing bacteria as determined by analysis of 16S ribosomal RNA gene sequences. J Gen Microbiol 139:1147–1153

    PubMed  CAS  Google Scholar 

  • Hessner MJ, Wejksnora PJ, Collins MLP (1991) Construction, characterization, and complementation of Rhodospirillum rubrum puf region mutants. J Bacteriol 173:5712–5722

    PubMed  CAS  Google Scholar 

  • Hollocher TC, Tate ME, Nicholas DJD (1981) Oxidation of ammonia by Nitrosomonas europaea. Definitive 18O-tracer evidence that hydroxylamine formation involves a monooxygenase. J Biol Chem 256:10834–10836

    PubMed  CAS  Google Scholar 

  • Hooper AB, Logan M, Arciero DM, McTavish H (1991) c-Cytochromes of the ammonia-oxidizing chemolithautotrophic bacteria. Biochim Biophys Acta 1058:13–16

    Article  PubMed  CAS  Google Scholar 

  • Hooper AB, Vannelli T, Bergmann DJ, Arciero DM (1997) Enzymology of the oxidation of ammonia to nitrite by bacteria. Antonie Van Leeuwenhoek 71:59–67

    Article  PubMed  CAS  Google Scholar 

  • Hyman MR, Wood PM (1985) Suicidal inactivation and labelling of ammonia mono-oxygenase by acetylene. Biochem J 227:719–725

    PubMed  CAS  Google Scholar 

  • Klotz MG, Alzerreca J, Norton JM (1997) A gene encoding a membrane protein exists upstream of the amoA/amoB genes in ammonia oxidizing bacteria: a third member of the amo operon? FEMS Microbiol Lett 150:65–73

    Article  PubMed  CAS  Google Scholar 

  • Klotz MG, Norton JM (1998) Multiple copies of ammonia monooxygenase (amo) operons have evolved under biased AT/GC mutational pressure in ammonia-oxidizing autotrophic bacteria. FEMS Microbiol Lett 168:303–311

    Article  PubMed  CAS  Google Scholar 

  • Koops HP, Harms H, Wehrmann H (1976) Isolation of a moderate halophilic ammonia-oxidizing bacterium, Nitrosococcus mobilis nov. sp. Arch Microbiol 107:277–282

    Article  PubMed  CAS  Google Scholar 

  • Koops HP, Böttcher B, Möller UC, Pommerening-Röser A, Stehr G (1990) Description of a new species of Nitrosococcus. Arch Microbiol 154:244–248

    Article  CAS  Google Scholar 

  • Koops HP, Böttcher B, Möller UC, Pommerening-Röser A, Stehr G (1991) Classification of eight new species of ammonia-oxidizing bacteria: Nitrosomonas communis sp. nov., Nitrosomonas ureae sp. nov., Nitrosomonas aestuarii sp. nov., Nitrosomonas marina sp. nov., Nitrosomonas nitrosa sp. nov., Nitrosomonas eutropha sp. nov., Nitrosomonas oligotropha sp. nov. and Nitrosomonas halophila sp. nov. J Gen Microbiol 137:1689–1699

    CAS  Google Scholar 

  • Koops HP, Möller UC (1992) The lithotrophic ammonia-oxidizing bacteria. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes. Springer, Berlin Heidelberg New York, pp 2625–2637

    Google Scholar 

  • Koops HP, Purkhold U, Pommerening-Röser A, Timmermann G, Wagner M (2003) The lithotrophic ammonia oxidizing bacteria. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes: an evolving electronic database for the microbial community, 3rd edn, release 3.13, Springer, Berlin Heidelberg New York, http://www.link.springer-ny.com/link/service/books/10125

  • McTavish H, Fuchs JA, Hooper AB (1993) Sequence of the gene coding for ammonia-monooxygenase in Nitrosomonas europaea. J Bacteriol 175:2436–2444

    PubMed  CAS  Google Scholar 

  • Murray RGE, Watson SW (1965) Structure of Nitrosocystis oceanus and comparison with Nitrosomonas and Nitrobacter. J Bacteriol 89:1594–1609

    PubMed  CAS  Google Scholar 

  • Overmann J, Garcia-Pichel F (2000) The phototrophic way of life. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes: an evolving electronic database for the microbial community, 3rd edn, release 3.2, Springer, Berlin Heidelberg New York, http://www.link.springer-ny.com/link/service/books/10125

  • Pinck C, Coeur C, Potier P, Bock E (2001) Polyclonal antibodies recognizing the AmoB of ammonia oxidizers of the β-subclass of the class Proteobacteria. Appl Environ Microbiol 67:118–124

    Article  PubMed  CAS  Google Scholar 

  • Purkhold U, Pommerening-Röser A, Juretschko S, Schmid MC, Koops HP, Wagner M (2000) Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis: implications for molecular diversity surveys. Appl Environ Microbiol 66:5368–5382

    Article  PubMed  CAS  Google Scholar 

  • Rohde M, H Gerberding T Mund GW Kohring (1988) Immunoelectron microscopic localization of bacterial enzymes: Pre- and post-embedding labelling techniques on resin-embedded samples. In: Mayer F (ed) Methods in microbiology. Academic, London, pp 175–210

    Google Scholar 

  • Roth J, Bendayan M, Carlemalm E, Villiger W, Garavito M (1983) Enhancement of structural preservation and immunocytochemical staining in low temperature embedded pancreatic tissue. J Histochem Cytochem 29:663–671

    Google Scholar 

  • Schmidt I, Bock E (1997) Anaerobic ammonia oxidation with nitrogen dioxide by Nitrosomonas eutropha. Arch Microbiol 167:106–111

    Article  CAS  Google Scholar 

  • Semrau JD, Chistoserdov A, Lebron J, Costello A, Davagnino J, Kenna E (1995) Particulate methane monooxygenase genes in methanotrophs. J Bacteriol 177:3071–3079

    PubMed  CAS  Google Scholar 

  • Spieck E, Meincke M, Bock E (1992) Taxonomic diversity of Nitrosovibrio strains isolated from building sandstones. FEMS Microbiol Ecol 102:21–26

    Article  Google Scholar 

  • Spieck E, Aamand J, Bartosch S, Bock E (1996) Immunocytochemical detection and location of the membrane-bound nitrite oxidoreductase in cells of Nitrobacter and Nitrospira. FEMS Mircobiol Lett 139:71–76

    Article  CAS  Google Scholar 

  • Spurr AR (1969) A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26:31–43

    Article  PubMed  CAS  Google Scholar 

  • Watson SW, Graham LB, Remsen CC, Valois FW (1971) A lobular, ammonia-oxidizing bacterium. Nitrosolobus multiformis nov. gen. nov. sp. Arch Microbiol 76:183–203

    CAS  Google Scholar 

  • Watson SW, Valois FW, Waterbury JB (1981) The family Nitrobacteraceae. In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG (eds) The prokaryotes. Springer, Berlin Heidelberg New York, pp 1005–1022

  • Whittenbury R, Phillips KC, Wilkinson JF (1970) Enrichment, isolation and some properties of methane-utilizing bacteria. J Gen Microbiol 61:205–218

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank H.-P. Koops for contributing pure cultures of ammonia oxidizers and I. Wachholz for excellent technical assistance with the post-embedding procedure and electron microscopic study in our institute. Further, we are grateful to H. Hohenberg of the Heinrich-Pette-Institute (Hamburg) for the cryofixation of cells and embedding in Lowicryl® HM20.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Fiencke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fiencke, C., Bock, E. Immunocytochemical localization of membrane-bound ammonia monooxygenase in cells of ammonia oxidizing bacteria. Arch Microbiol 185, 99–106 (2006). https://doi.org/10.1007/s00203-005-0074-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-005-0074-4

Keywords

Navigation