Skip to main content
Log in

Fractures in spina bifida from childhood to young adulthood

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

This study assessed the prevalence and types of fractures in spina bifida and examined risk factors for fracture. Fracture prevalence was highest in childhood and reduced in adolescence and young adulthood. The importance of maintaining mobility is highlighted by the increased risk of fracture in those who are non-ambulatory.

Introduction

The aims of this study are to study the prevalence and types of fractures according to age group in spina bifida and examine risk factors associated with fracture.

Methods

This is a retrospective cohort study of 146 individuals with spina bifida aged 2 years or older who attended the paediatric or adult spina bifida multidisciplinary clinic at a single tertiary hospital.

Results

Median age at which first fracture occurred was 7 years (interquartile range 4–13 years). Fracture rates in children (ages 2–10), adolescents (ages 11–18) and adults (age > 18) were 10.9/1000 (95 % confidence interval 5.9–18.3), 5.4/1000 (95 % CI 1.5–13.8) and 2.9/1000 (95 % CI 0.6–8.1) patient years respectively. Childhood fractures predominantly involved the distal femur and femoral shaft; these fractures were rarely seen in adulthood. Non-ambulatory status was associated with a 9.8 times higher risk of fracture compared with ambulatory patients (odds ratio 9.8, p = 0.016, 95 % CI 1.5–63.0). Relative risk of re-fracture was 3.1 (95 % CI 1.4–6.8). Urological intervention with intestinal segments was associated with renal calculi (p = 0.037) but neither was associated with fracture.

Conclusions

The risk of fracture is lower in adults compared with children with spina bifida. The predominant childhood fracture affects the distal femur, and immobility is the most significant risk factor for fracture. Clinical factors contributing to fracture risk need to be elucidated to enable selection of patients who require investigation and treatment of osteoporosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Mitchell LE, Adzick NS, Melchionne J, Pasquariello PS, Sutton LN, Whitehead AS (2004) Spina bifida. Lancet 364:1885–1895

    Article  PubMed  Google Scholar 

  2. Malakounides G, Lee F, Murphy F, Boddy SA (2013) Single centre experience: long term outcomes in spina bifida patients. J Pediatr Urol 9:585–589

    Article  PubMed  Google Scholar 

  3. Bowman RM, McLone DG, Grant JA, Tomita T, Ito JA (2001) Spina bifida outcome: a 25-year prospective. Pediatr Neurosurg 34:114–120

    Article  CAS  PubMed  Google Scholar 

  4. Parsch K (1991) Origin and treatment of fractures in spina bifida. European Journal of Pediatric Surgery: official journal of Austrian Association of Pediatric Surgery [et al] = Zeitschrift fur Kinderchirurgie 1:298–305

    Article  CAS  Google Scholar 

  5. Akbar M, Bresch B, Raiss P, Furstenberg CH, Bruckner T, Seyler T, Carstens C, Abel R (2010) Fractures in myelomeningocele. Journal of orthopaedics and traumatology : official journal of the Italian Society of Orthopaedics and Traumatology 11:175–182

    Article  Google Scholar 

  6. Lock TR, Aronson DD (1989) Fractures in patients who have myelomeningocele. J Bone Joint Surg Am 71:1153–1157

    Article  CAS  PubMed  Google Scholar 

  7. Marreiros H, Monteiro L, Loff C, Calado E (2010) Fractures in children and adolescents with spina bifida: the experience of a Portuguese tertiary-care hospital. Dev Med Child Neurol 52:754–759

    Article  PubMed  Google Scholar 

  8. Apkon SD, Fenton L, Coll JR (2009) Bone mineral density in children with myelomeningocele. Dev Med Child Neurol 51:63–67

    Article  PubMed  Google Scholar 

  9. Szalay EA, Cheema A (2011) Children with spina bifida are at risk for low bone density. Clin Orthop Relat Res 469:1253–1257

    Article  PubMed  Google Scholar 

  10. Haas RE, Kecskemethy HH, Lopiccolo MA, Hossain J, Dy RT, Bachrach SJ (2012) Lower extremity bone mineral density in children with congenital spinal dysfunction. Dev Med Child Neurol 54:1133–1137

    Article  PubMed  Google Scholar 

  11. Donaldson LJ, Cook A, Thomson RG (1990) Incidence of fractures in a geographically defined population. J Epidemiol Community Health 44:241–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dosa NP, Eckrich M, Katz DA, Turk M, Liptak GS (2007) Incidence, prevalence, and characteristics of fractures in children, adolescents, and adults with spina bifida. The journal of spinal cord medicine 30(Suppl 1):S5–S9

    Article  PubMed  PubMed Central  Google Scholar 

  13. Webb TS (2010) Optimizing health care for adults with spina bifida. Developmental disabilities research reviews 16:76–81

    Article  PubMed  Google Scholar 

  14. Hoffer MM, Feiwell E, Perry R, Perry J, Bonnett C (1973) Functional ambulation in patients with myelomeningocele. J Bone Joint Surg Am 55:137–148

    Article  CAS  PubMed  Google Scholar 

  15. Rosengren BE, Karlsson M, Petersson I, Englund M (2015) The 21st-century landscape of adult fractures: cohort study of a complete adult regional population. Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research 30:535–542

    Article  Google Scholar 

  16. Donaldson LJ, Reckless IP, Scholes S, Mindell JS, Shelton NJ (2008) The epidemiology of fractures in England. J Epidemiol Community Health 62:174–180

    Article  CAS  PubMed  Google Scholar 

  17. Zehnder Y, Luthi M, Michel D, Knecht H, Perrelet R, Neto I, Kraenzlin M, Zach G, Lippuner K (2004) Long-term changes in bone metabolism, bone mineral density, quantitative ultrasound parameters, and fracture incidence after spinal cord injury: a cross-sectional observational study in 100 paraplegic men. Osteoporosis international: a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA 15:180–189

    Article  Google Scholar 

  18. Gifre L, Vidal J, Carrasco J, Portell E, Puig J, Monegal A, Guanabens N, Peris P (2014) Incidence of skeletal fractures after traumatic spinal cord injury: a 10-year follow-up study. Clin Rehabil 28:361–369

    Article  PubMed  Google Scholar 

  19. Quilis AN (1974) Fractures in children with myelomeningocele. Acta Orthop Scand 45:883–897

    Article  CAS  PubMed  Google Scholar 

  20. Glick NR, Fischer MH, Heisey DM, Leverson GE, Mann DC (2005) Epidemiology of fractures in people with severe and profound developmental disabilities. Osteoporosis international: a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA 16:389–396

    Article  Google Scholar 

  21. Binkley T, Johnson J, Vogel L, Kecskemethy H, Henderson R, Specker B (2005) Bone measurements by peripheral quantitative computed tomography (pQCT) in children with cerebral palsy. J Pediatr 147:791–796

    Article  PubMed  Google Scholar 

  22. Valtonen KM, Goksor LA, Jonsson O, Mellstrom D, Alaranta HT, Viikari-Juntura ER (2006) Osteoporosis in adults with meningomyelocele: an unrecognized problem at rehabilitation clinics. Arch Phys Med Rehabil 87:376–382

    Article  PubMed  Google Scholar 

  23. Dicianno BE, Karmarkar A, Houtrow A, et al. (2015) Factors associated with mobility outcomes in a National Spina Bifida Patient Registry. American journal of physical medicine & rehabilitation/Association of Academic Physiatrists 94:1015–1025

    Article  Google Scholar 

  24. Drummond DS, Moreau M, Cruess RL (1981) Post-operative neuropathic fractures in patients with myelomeningocele. Dev Med Child Neurol 23:147–150

    Article  CAS  PubMed  Google Scholar 

  25. Koch MO, McDougal WS (1985) The pathophysiology of hyperchloremic metabolic acidosis after urinary diversion through intestinal segments. Surgery 98:561–570

    CAS  PubMed  Google Scholar 

  26. Adams RC, Vachha B, Samuelson ML, Keefover-Hicks A, Snodgrass WT (2010) Incidence of new onset metabolic acidosis following enteroplasty for myelomeningocele. J Urol 183:302–305

    Article  PubMed  Google Scholar 

  27. Hafez AT, McLorie G, Gilday D, Laudenberg B, Upadhyay J, Bagli D, Khoury AE (2003) Long-term evaluation of metabolic profile and bone mineral density after ileocystoplasty in children. J Urol 170:1639–1641 discussion 1641-1632

    Article  CAS  PubMed  Google Scholar 

  28. Davidsson T, Lindergard B, Obrant K, Mansson W (1995) Long-term metabolic effects of urinary diversion on skeletal bone: histomorphometric and mineralogic analysis. Urology 46:328–333

    Article  CAS  PubMed  Google Scholar 

  29. Koch MO, McDougal WS, Hall MC, Hill DE, Braren HV, Donofrio MN (1992) Long-term metabolic effects of urinary diversion: a comparison of myelomeningocele patients managed by clean intermittent catheterization and urinary diversion. J Urol 147:1343–1347

    CAS  PubMed  Google Scholar 

  30. Kawakita M, Arai Y, Shigeno C, Terai A, Okada Y, Takeuchi H, Konishi J, Yoshida O (1996) Bone demineralization following urinary intestinal diversion assessed by urinary pyridinium cross-links and dual energy x-ray absorptiometry. J Urol 156:355–359

    Article  CAS  PubMed  Google Scholar 

  31. Incel N, Incel NA, Uygur MC, Tan O, Erol D (2006) Effect of Stanford pouch and ileal conduit urinary diversions on bone mineral density and metabolism. Int Urol Nephrol 38:447–451

    Article  PubMed  Google Scholar 

  32. Proos LA, Dahl M, Ahlsten G, Tuvemo T, Gustafsson J (1996) Increased perinatal intracranial pressure and prediction of early puberty in girls with myelomeningocele. Arch Dis Child 75:42–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Proos LA, Tuvemo T, Ahlsten G, Gustafsson J, Dahl M (2011) Increased perinatal intracranial pressure and brainstem dysfunction predict early puberty in boys with myelomeningocele. Acta Paediatr 100:1368–1372

    Article  PubMed  Google Scholar 

  34. Carel JC, Leger J (2008) Clinical practice. Precocious puberty The New England journal of medicine 358:2366–2377

    Article  CAS  PubMed  Google Scholar 

  35. Takahashi Y, Minamitani K, Kobayashi Y, Minagawa M, Yasuda T, Niimi H (1996) Spinal and femoral bone mass accumulation during normal adolescence: comparison with female patients with sexual precocity and with hypogonadism. J Clin Endocrinol Metab 81:1248–1253

    CAS  PubMed  Google Scholar 

  36. Neely EK, Bachrach LK, Hintz RL, Habiby RL, Slemenda CW, Feezle L, Pescovitz OH (1995) Bone mineral density during treatment of central precocious puberty. J Pediatr 127:819–822

    Article  CAS  PubMed  Google Scholar 

  37. Saggese G, Bertelloni S, Baroncelli GI, Battini R, Franchi G (1993) Reduction of bone density: an effect of gonadotropin releasing hormone analogue treatment in central precocious puberty. Eur J Pediatr 152:717–720

    Article  CAS  PubMed  Google Scholar 

  38. van der Sluis IM, Boot AM, Krenning EP, Drop SL, de Muinck Keizer-Schrama SM (2002) Longitudinal follow-up of bone density and body composition in children with precocious or early puberty before, during and after cessation of GnRH agonist therapy. J Clin Endocrinol Metab 87:506–512

    Article  PubMed  Google Scholar 

  39. Pasquino AM, Pucarelli I, Accardo F, Demiraj V, Segni M, Di Nardo R (2008) Long-term observation of 87 girls with idiopathic central precocious puberty treated with gonadotropin-releasing hormone analogs: impact on adult height, body mass index, bone mineral content, and reproductive function. J Clin Endocrinol Metab 93:190–195

    Article  CAS  PubMed  Google Scholar 

  40. Taskinen S, Fagerholm R, Makitie O (2007) Skeletal health after intestinal bladder augmentation: findings in 54 patients. BJU Int 100:906–910

    Article  PubMed  Google Scholar 

  41. Decter RM, Furness PD 3rd, Nguyen TA, McGowan M, Laudermilch C, Telenko A (1997) Reproductive understanding, sexual functioning and testosterone levels in men with spina bifida. J Urol 157:1466–1468

    Article  CAS  PubMed  Google Scholar 

  42. Rintoul NE, Sutton LN, Hubbard AM, Cohen B, Melchionni J, Pasquariello PS, Adzick NS (2002) A new look at myelomeningoceles: functional level, vertebral level, shunting, and the implications for fetal intervention. Pediatrics 109:409–413

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Sue Panckridge for preparation of the figure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Trinh.

Ethics declarations

Grants

AT is supported by a Royal Australasian College of Physicians/Osteoporosis Australia Research Grant. PW and FM is supported by an Osteoporosis Australia/Australia and New Zealand Bone and Mineral Society Clinical Grant. PJF is supported by a National Health and Medical Research Council of Australia, Senior Principal Research Fellowship (#1,002,559). Hudson Institute is supported by the Victorian Government’s Operational Infrastructure Support program.

Conflicts of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trinh, A., Wong, P., Brown, J. et al. Fractures in spina bifida from childhood to young adulthood. Osteoporos Int 28, 399–406 (2017). https://doi.org/10.1007/s00198-016-3742-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-016-3742-0

Keywords

Navigation