Skip to main content

Advertisement

Log in

Can bone loss in rheumatoid arthritis be prevented?

  • Review
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Rheumatoid arthritis (RA) is a systemic inflammatory disease that can lead to local joint deformations (bone erosions and joint space narrowing) and to extra-articular phenomena, including generalized osteoporosis. In addition, in patients with RA, the risk of vertebral and nonvertebral fractures is doubled. High disease activity (inflammation), immobility, and glucocorticoid use are common factors that substantially increase fracture risk in these patients, on top of the background fracture risk based on classical risk factors such as high age, low body mass, and female gender. New insights on the links between the immune system and the bone system, the field of osteoimmunology, have shown that local and generalized bone loss share common pathways. The receptor activator of nuclear factor κB ligand/osteoprotegerin pathway (RANKl/OPG) is one of the most important pathways, as it is (strongly) upregulated by inflammation. In modern treatment of RA with biologics, for example, TNFα-blocking agents and combination therapy of conventional disease-modifying antirheumatic drugs (DMARDs), clinical remission is a realistic treatment goal. As a consequence, in recent studies, it has been documented that both local and generalized bone loss is absent or minimal in those patients who are in clinical remission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Klareskog L, Catrina AI, Paget S (2009) Rheumatoid arthritis. Lancet 373(9664):659–672

    Article  PubMed  CAS  Google Scholar 

  2. Sokka T, Abelson B, Pincus T (2008) Mortality in rheumatoid arthritis: 2008 update. Clin Exp Rheumatol 26(5 Suppl 51):S35–S61

    PubMed  CAS  Google Scholar 

  3. Allaire S et al (2008) Contemporary prevalence and incidence of work disability associated with rheumatoid arthritis in the US. Arthritis Rheum 59(4):474–480

    Article  PubMed  Google Scholar 

  4. McInnes IB, Schett G (2011) The pathogenesis of rheumatoid arthritis. N Engl J Med 365(23):2205–2219

    Article  PubMed  CAS  Google Scholar 

  5. Bruynesteyn K et al (2005) Deciding on progression of joint damage in paired films of individual patients: smallest detectable difference or change. Ann Rheum Dis 64(2):179–182

    Article  PubMed  CAS  Google Scholar 

  6. van der Heijde D (2000) How to read radiographs according to the Sharp/van der Heijde method. J Rheumatol 27(1):261–263

    PubMed  Google Scholar 

  7. Bultink IE (2012) Osteoporosis and fractures in systemic lupus erythematosus. Arthritis Care Res (Hoboken) 64(1):2–8

    Article  Google Scholar 

  8. Gravallese EM et al (1998) Identification of cell types responsible for bone resorption in rheumatoid arthritis and juvenile rheumatoid arthritis. Am J Pathol 152(4):943–951

    PubMed  CAS  Google Scholar 

  9. Takayanagi H (2009) Osteoimmunology and the effects of the immune system on bone. Nat Rev Rheumatol 5(12):667–676

    Article  PubMed  CAS  Google Scholar 

  10. Schett G, Saag KG, Bijlsma JW (2010) From bone biology to clinical outcome: state of the art and future perspectives. Ann Rheum Dis 69(8):1415–1419

    Article  PubMed  CAS  Google Scholar 

  11. Seriolo B et al (2002) Serum osteocalcin levels in premenopausal rheumatoid arthritis patients. Ann N Y Acad Sci 966:502–507

    Article  PubMed  CAS  Google Scholar 

  12. Geusens P, Lems WF (2011) Osteoimmunology and osteoporosis. Arthritis Res Ther 13(5):242

    Article  PubMed  CAS  Google Scholar 

  13. Gravallese EM et al (2000) Synovial tissue in rheumatoid arthritis is a source of osteoclast differentiation factor. Arthritis Rheum 43(2):250–258

    Article  PubMed  CAS  Google Scholar 

  14. Zwerina J et al (2004) Single and combined inhibition of tumor necrosis factor, interleukin-1, and RANKL pathways in tumor necrosis factor-induced arthritis: effects on synovial inflammation, bone erosion, and cartilage destruction. Arthritis Rheum 50(1):277–290

    Article  PubMed  CAS  Google Scholar 

  15. Shigeyama Y et al (2000) Expression of osteoclast differentiation factor in rheumatoid arthritis. Arthritis Rheum 43(11):2523–2530

    Article  PubMed  CAS  Google Scholar 

  16. Yeo L et al (2011) Cytokine mRNA profiling identifies B cells as a major source of RANKL in rheumatoid arthritis. Ann Rheum Dis 70(11):2022–2028

    Article  PubMed  CAS  Google Scholar 

  17. Mustila A et al (2011) Anti-citrullinated peptide antibodies and the progression of radiographic joint erosions in patients with early rheumatoid arthritis treated with FIN-RACo combination and single disease-modifying antirheumatic drug strategies. Clin Exp Rheumatol 29(3):500–505

    PubMed  CAS  Google Scholar 

  18. van der Helm-van Mil AH et al (2005) Antibodies to citrullinated proteins and differences in clinical progression of rheumatoid arthritis. Arthritis Res Ther 7(5):R949–R958

    Article  PubMed  CAS  Google Scholar 

  19. Harre U et al (2012) Induction of osteoclastogenesis and bone loss by human autoantibodies against citrullinated vimentin. J Clin Invest 122(5):1791–1802

    Article  PubMed  CAS  Google Scholar 

  20. Fouque-Aubert A et al (2010) Assessment of hand bone loss in rheumatoid arthritis by high-resolution peripheral quantitative CT. Ann Rheum Dis 69(9):1671–1676

    Article  PubMed  Google Scholar 

  21. Stach CM et al (2010) Periarticular bone structure in rheumatoid arthritis patients and healthy individuals assessed by high-resolution computed tomography. Arthritis Rheum 62(2):330–339

    PubMed  Google Scholar 

  22. Rau R, Herborn G (1996) Healing phenomena of erosive changes in rheumatoid arthritis patients undergoing disease-modifying antirheumatic drug therapy. Arthritis Rheum 39(1):162–168

    Article  PubMed  CAS  Google Scholar 

  23. Matzelle MM et al (2012) Resolution of inflammation induces osteoblast function and regulates the Wnt signaling pathway. Arthritis Rheum 64(5):1540–1550

    Article  PubMed  CAS  Google Scholar 

  24. Lories RJ, Luyten FP (2009) Osteoimmunology: Wnt antagonists: for better or worse? Nat Rev Rheumatol 5(8):420–421

    Article  PubMed  CAS  Google Scholar 

  25. Diarra D et al (2007) Dickkopf-1 is a master regulator of joint remodeling. Nat Med 13(2):156–163

    Article  PubMed  CAS  Google Scholar 

  26. Appel H et al (2009) Altered skeletal expression of sclerostin and its link to radiographic progression in ankylosing spondylitis. Arthritis Rheum 60(11):3257–3262

    Article  PubMed  Google Scholar 

  27. Garnero P, Tabassi NC, Voorzanger-Rousselot N (2008) Circulating dickkopf-1 and radiological progression in patients with early rheumatoid arthritis treated with etanercept. J Rheumatol 35(12):2313–2315

    Article  PubMed  CAS  Google Scholar 

  28. Terpos E et al (2011) Early effects of IL-6 receptor inhibition on bone homeostasis: a pilot study in women with rheumatoid arthritis. Clin Exp Rheumatol 29(6):921–925

    PubMed  Google Scholar 

  29. Xu S, Wang Y, Lu J, Xu J, (2012) Osteoprotegerin and RANKL in the pathogenesis of rheumatoid arthritis-induced osteoporosis. Rheumatol Int 32(11):3397–403

    Google Scholar 

  30. O'Brien CA, Nakashima T, Takayanagi H (2012) Osteocyte control of osteoclastogenesis. Bone. doi:10.1016/j.bone.2012.08.121

  31. Klein-Nulend J, Bakker AD, Bacabac RG, Vatsa A, Weinbaum S (2012) Mechanosensation and transduction in osteocytes. Bone. doi:10.1016/j.bone.2012.10.013

  32. Boyesen P et al (2011) MRI in early rheumatoid arthritis: synovitis and bone marrow oedema are independent predictors of subsequent radiographic progression. Ann Rheum Dis 70(3):428–433

    Article  PubMed  Google Scholar 

  33. Lems WF (2007) Bisphosphonates and glucocorticoids: effects on bone quality. Arthritis Rheum 56(11):3518–3522

    Article  PubMed  CAS  Google Scholar 

  34. Breban S et al (2012) Identification of rheumatoid arthritis patients with vertebral fractures using bone mineral density and trabecular bone score. J Clin Densitom 15(3):260–266

    Article  PubMed  Google Scholar 

  35. Cooper C et al (1992) Incidence of clinically diagnosed vertebral fractures: a population based study in Rochester, Minnesota, 1985–1989. J Bone Miner Res 7(2):221–227

    Article  PubMed  CAS  Google Scholar 

  36. Oleksik A et al (2000) Bone structure in patients with low bone mineral density with or without vertebral fractures. J Bone Miner Res 15(7):1368–1375

    Article  PubMed  CAS  Google Scholar 

  37. Orstavik RE et al (2004) Vertebral deformities in rheumatoid arthritis: a comparison with population-based controls. Arch Intern Med 164(4):420–425

    Article  PubMed  Google Scholar 

  38. Lems WF et al (2011) Osteopenia: a diagnostic and therapeutic challenge. Curr Osteoporos Rep 9(3):167–172

    Article  PubMed  Google Scholar 

  39. Rosholm A et al (2001) Estimation of bone mineral density by digital X-ray radiogrammetry: theoretical background and clinical testing. Osteoporos Int 12(11):961–969

    Article  PubMed  CAS  Google Scholar 

  40. Haugeberg G et al (2004) Hand cortical bone mass and its associations with radiographic joint damage and fractures in 50–70 year old female patients with rheumatoid arthritis: cross sectional Oslo-Truro-Amsterdam (OSTRA) collaborative study. Ann Rheum Dis 63(10):1331–1334

    Article  PubMed  CAS  Google Scholar 

  41. Forsblad-d'Elia H, Carlsten H (2011) Bone mineral density by digital X-ray radiogrammetry is strongly decreased and associated with joint destruction in long-standing rheumatoid arthritis: a cross-sectional study. BMC Musculoskeletal Disorders 12:242

    Google Scholar 

  42. Guler-Yuksel M et al (2010) Accelerated hand bone mineral density loss is associated with progressive joint damage in hands and feet in recent-onset rheumatoid arthritis. Arthritis Res Ther 12(3):R96

    Article  PubMed  Google Scholar 

  43. Lodder MC et al (2004) Bone mineral density in patients with rheumatoid arthritis: relation between disease severity and low bone mineral density. Ann Rheum Dis 63(12):1576–1580

    Article  PubMed  CAS  Google Scholar 

  44. Haugeberg G et al (2000) Bone mineral density and frequency of osteoporosis in female patients with rheumatoid arthritis: results from 394 patients in the Oslo County Rheumatoid Arthritis register. Arthritis Rheum 43(3):522–530

    Article  PubMed  CAS  Google Scholar 

  45. Haugeberg G et al (2000) Reduced bone mineral density in male rheumatoid arthritis patients: frequencies and associations with demographic and disease variables in ninety-four patients in the Oslo County Rheumatoid Arthritis Register. Arthritis Rheum 43(12):2776–2784

    Article  PubMed  CAS  Google Scholar 

  46. Gough AK et al (1994) Generalised bone loss in patients with early rheumatoid arthritis. Lancet 344(8914):23–27

    Article  PubMed  CAS  Google Scholar 

  47. Spector TD et al (1993) Risk of vertebral fracture in women with rheumatoid arthritis. BMJ 306(6877):558

    Article  PubMed  CAS  Google Scholar 

  48. Huusko TM et al (2001) Threefold increased risk of hip fractures with rheumatoid arthritis in Central Finland. Ann Rheum Dis 60(5):521–522

    Article  PubMed  CAS  Google Scholar 

  49. van Staa TP et al (2006) Clinical assessment of the long-term risk of fracture in patients with rheumatoid arthritis. Arthritis Rheum 54(10):3104–3112

    Article  PubMed  Google Scholar 

  50. Hooyman JR et al (1984) Fractures after rheumatoid arthritis. A population-based study. Arthritis Rheum 27(12):1353–1361

    Article  PubMed  CAS  Google Scholar 

  51. Roux C (2011) Osteoporosis in inflammatory joint diseases. Osteoporos Int 22(2):421–433

    Article  PubMed  CAS  Google Scholar 

  52. Felsenberg D et al (2002) Incidence of vertebral fracture in europe: results from the European Prospective Osteoporosis Study (EPOS). J Bone Miner Res 17(4):716–724

    Article  PubMed  CAS  Google Scholar 

  53. Ismail AA et al (2002) Incidence of limb fracture across Europe: results from the European Prospective Osteoporosis Study (EPOS). Osteoporos Int 13(7):565–571

    Article  PubMed  CAS  Google Scholar 

  54. Amin S. and Grbariel S. (2011) Fracture Risk Is Increased in Young Women with Rheumatoid Arthritis. J Bone Miner Res 26 (Suppl 1). Available at http://www.asbmr.org/Meetings/AnnualMeeting/Abstract2011.aspx

  55. Jones G et al (2003) The effect of treatment on radiological progression in rheumatoid arthritis: a systematic review of randomized placebo-controlled trials. Rheumatology (Oxford) 42(1):6–13

    Article  CAS  Google Scholar 

  56. Lee CK et al (2004) Effects of disease-modifying antirheumatic drugs and antiinflammatory cytokines on human osteoclastogenesis through interaction with receptor activator of nuclear factor kappaB, osteoprotegerin, and receptor activator of nuclear factor kappaB ligand. Arthritis Rheum 50(12):3831–3843

    Article  PubMed  CAS  Google Scholar 

  57. Wheeler DL et al (1995) The short- and long-term effects of methotrexate on the rat skeleton. Bone 16(2):215–221

    Article  PubMed  CAS  Google Scholar 

  58. Minaur NJ et al (2002) Methotrexate in the treatment of rheumatoid arthritis. II. In vivo effects on bone mineral density. Rheumatology (Oxford) 41(7):741–749

    Article  CAS  Google Scholar 

  59. di Munno O et al (2004) Effect of low dose methotrexate on bone density in women with rheumatoid arthritis: results from a multicenter cross-sectional study. J Rheumatol 31(7):1305–1309

    PubMed  Google Scholar 

  60. Kobayashi Y et al (2004) The active metabolite of leflunomide, A771726, inhibits both the generation of and the bone-resorbing activity of osteoclasts by acting directly on cells of the osteoclast lineage. J Bone Miner Metab 22(4):318–328

    Article  PubMed  CAS  Google Scholar 

  61. Strand V et al (1999) Treatment of active rheumatoid arthritis with leflunomide compared with placebo and methotrexate. Leflunomide Rheumatoid Arthritis Investigators Group. Arch Intern Med 159(21):2542–2550

    Article  PubMed  CAS  Google Scholar 

  62. Smolen JS et al (1999) Efficacy and safety of leflunomide compared with placebo and sulphasalazine in active rheumatoid arthritis: a double-blind, randomised, multicentre trial. European Leflunomide Study Group. Lancet 353(9149):259–266

    Article  PubMed  CAS  Google Scholar 

  63. De Jong PH et al. (2013) Induction therapy with a combination of DMARDs is better than methotrexate monotherapy: first results of the tREACH trial. Ann Rheum Dis 72(1):72–8

    Google Scholar 

  64. Hofbauer LC et al (2001) Effects of immunosuppressants on receptor activator of NF-kappaB ligand and osteoprotegerin production by human osteoblastic and coronary artery smooth muscle cells. Biochem Biophys Res Commun 280(1):334–339

    Article  PubMed  CAS  Google Scholar 

  65. Schlosberg M et al (1989) The effect of cyclosporin A administration and its withdrawal on bone mineral metabolism in the rat. Endocrinology 124(5):2179–2184

    Article  PubMed  CAS  Google Scholar 

  66. Forre O (1994) Radiologic evidence of disease modification in rheumatoid arthritis patients treated with cyclosporine. Results of a 48-week multicenter study comparing low-dose cyclosporine with placebo. Norwegian Arthritis Study Group. Arthritis Rheum 37(10):1506–1512

    Article  PubMed  CAS  Google Scholar 

  67. Ferraccioli G, Casatta L, Bartoli E (1996) Increase of bone mineral density and anabolic variables in patients with rheumatoid arthritis resistant to methotrexate after cyclosporin A therapy. J Rheumatol 23(9):1539–1542

    PubMed  CAS  Google Scholar 

  68. Mazzantini M et al (2007) Effect of cyclosporine A on bone density in female rheumatoid arthritis patients: results from a multicenter, cross-sectional study. Clin Exp Rheumatol 25(5):709–715

    PubMed  CAS  Google Scholar 

  69. Hall TJ et al (1996) Gold salts inhibit osteoclastic bone resorption in vitro. Inflamm Res 45(5):230–233

    Article  PubMed  CAS  Google Scholar 

  70. Clark P et al. (2000) Injectable gold for rheumatoid arthritis. Cochrane Database of Systematic Reviews 1997, Issue 4. Art. No.: CD000520. doi:10.1002/14651858.CD000520

  71. Rizzoli R et al (2012) Management of glucocorticoid-induced osteoporosis. Calcif Tissue Int 91(4):225–243

    Article  PubMed  CAS  Google Scholar 

  72. Kirwan JR et al. (2007) Effects of glucocorticoids on radiological progression in rheumatoid arthritis. Cochrane Database of Systematic Reviews 2007, Issue 1. Art. No.: CD006356. doi:10.1002/14651858.CD006356

  73. Boers M et al (1997) Randomised comparison of combined step-down prednisolone, methotrexate and sulphasalazine with sulphasalazine alone in early rheumatoid arthritis. Lancet 350(9074):309–318

    Article  PubMed  CAS  Google Scholar 

  74. Haugeberg G et al (2005) Reduced loss of hand bone density with prednisolone in early rheumatoid arthritis: results from a randomized placebo-controlled trial. Arch Intern Med 165(11):1293–1297

    Article  PubMed  Google Scholar 

  75. Haugeberg G et al (2011) Effect of intra-articular corticosteroid injections and inflammation on periarticular and generalised bone loss in early rheumatoid arthritis. Ann Rheum Dis 70(1):184–187

    Article  PubMed  Google Scholar 

  76. Durez P et al (2007) Treatment of early rheumatoid arthritis: a randomized magnetic resonance imaging study comparing the effects of methotrexate alone, methotrexate in combination with infliximab, and methotrexate in combination with intravenous pulse methylprednisolone. Arthritis Rheum 56(12):3919–3927

    Article  PubMed  CAS  Google Scholar 

  77. Goekoop-Ruiterman YP et al (2008) Clinical and radiographic outcomes of four different treatment strategies in patients with early rheumatoid arthritis (the BeSt study): A randomized, controlled trial. Arthritis Rheum 58(2 Suppl):S126–S135

    PubMed  CAS  Google Scholar 

  78. Bakker MF et al (2012) Low-dose prednisone inclusion in a methotrexate-based, tight control strategy for early rheumatoid arthritis: a randomized trial. Ann Intern Med 156(5):329–339

    Article  PubMed  Google Scholar 

  79. Guler-Yuksel M et al (2009) Changes in hand and generalised bone mineral density in patients with recent-onset rheumatoid arthritis. Ann Rheum Dis 68(3):330–336

    Article  PubMed  CAS  Google Scholar 

  80. Dirven L et al (2011) Changes in hand bone mineral density and the association with the level of disease activity in patients with rheumatoid arthritis: bone mineral density measurements in a multicenter randomized clinical trial. Arthritis Care Res (Hoboken) 63(12):1691–1699

    Article  CAS  Google Scholar 

  81. Maini RN et al (1998) Therapeutic efficacy of multiple intravenous infusions of anti-tumor necrosis factor alpha monoclonal antibody combined with low-dose weekly methotrexate in rheumatoid arthritis. Arthritis Rheum 41(9):1552–1563

    Article  PubMed  CAS  Google Scholar 

  82. Abu-Amer Y et al (2000) Tumor necrosis factor receptors types 1 and 2 differentially regulate osteoclastogenesis. J Biol Chem 275(35):27307–27310

    PubMed  CAS  Google Scholar 

  83. Kobayashi K et al (2000) Tumor necrosis factor alpha stimulates osteoclast differentiation by a mechanism independent of the ODF/RANKL-RANK interaction. J Exp Med 191(2):275–286

    Article  PubMed  CAS  Google Scholar 

  84. Nakashima T et al (2000) Protein expression and functional difference of membrane-bound and soluble receptor activator of NF-kappaB ligand: modulation of the expression by osteotropic factors and cytokines. Biochem Biophys Res Commun 275(3):768–775

    Article  PubMed  CAS  Google Scholar 

  85. Schett G et al (2003) Osteoprotegerin protects against generalized bone loss in tumor necrosis factor-transgenic mice. Arthritis Rheum 48(7):2042–2051

    Article  PubMed  CAS  Google Scholar 

  86. Redlich K et al (2002) Tumor necrosis factor alpha-mediated joint destruction is inhibited by targeting osteoclasts with osteoprotegerin. Arthritis Rheum 46(3):785–792

    Article  PubMed  CAS  Google Scholar 

  87. Vis M et al (2006) Evaluation of bone mineral density, bone metabolism, osteoprotegerin and receptor activator of the NFkappaB ligand serum levels during treatment with infliximab in patients with rheumatoid arthritis. Ann Rheum Dis 65(11):1495–1499

    Article  PubMed  CAS  Google Scholar 

  88. Seriolo B et al (2006) Bone metabolism changes during anti-TNF-alpha therapy in patients with active rheumatoid arthritis. Ann N Y Acad Sci 1069:420–427

    Article  PubMed  CAS  Google Scholar 

  89. Klareskog L et al (2004) Therapeutic effect of the combination of etanercept and methotrexate compared with each treatment alone in patients with rheumatoid arthritis: double-blind randomised controlled trial. Lancet 363(9410):675–681

    Article  PubMed  CAS  Google Scholar 

  90. Maini RN et al (2004) Sustained improvement over two years in physical function, structural damage, and signs and symptoms among patients with rheumatoid arthritis treated with infliximab and methotrexate. Arthritis Rheum 50(4):1051–1065

    Article  PubMed  CAS  Google Scholar 

  91. Weinblatt ME et al (2003) Adalimumab, a fully human anti-tumor necrosis factor alpha monoclonal antibody, for the treatment of rheumatoid arthritis in patients taking concomitant methotrexate: the ARMADA trial. Arthritis Rheum 48(1):35–45

    Article  PubMed  CAS  Google Scholar 

  92. Keystone EC et al (2004) Radiographic, clinical, and functional outcomes of treatment with adalimumab (a human anti-tumor necrosis factor monoclonal antibody) in patients with active rheumatoid arthritis receiving concomitant methotrexate therapy: a randomized, placebo-controlled, 52-week trial. Arthritis Rheum 50(5):1400–1411

    Article  PubMed  CAS  Google Scholar 

  93. Favalli EG et al (2012) The role of biologic agents in damage progression in rheumatoid arthritis: indirect comparison of data coming from randomized clinical trials. Ther Adv Musculoskelet Dis 4(4):213–223

    Article  PubMed  CAS  Google Scholar 

  94. Eekman DA et al (2011) Stable bone mineral density in lumbar spine and hip in contrast to bone loss in the hands during long-term treatment with infliximab in patients with rheumatoid arthritis. Ann Rheum Dis 70(2):389–390

    Article  PubMed  Google Scholar 

  95. Wijbrandts CA et al (2009) Bone mineral density in rheumatoid arthritis patients 1 year after adalimumab therapy: arrest of bone loss. Ann Rheum Dis 68(3):373–376

    Article  PubMed  CAS  Google Scholar 

  96. Marotte H et al (2007) A 1-year case–control study in patients with rheumatoid arthritis indicates prevention of loss of bone mineral density in both responders and nonresponders to infliximab. Arthritis Res Ther 9(3):R61

    Article  PubMed  CAS  Google Scholar 

  97. Guler-Yuksel M et al (2008) Changes in bone mineral density in patients with recent onset, active rheumatoid arthritis. Ann Rheum Dis 67(6):823–828

    Article  PubMed  CAS  Google Scholar 

  98. Emery P et al (2009) Less radiographic progression with adalimumab plus methotrexate versus methotrexate monotherapy across the spectrum of clinical response in early rheumatoid arthritis. J Rheumatol 36(7):1429–1441

    Article  PubMed  CAS  Google Scholar 

  99. Smolen JS et al (2009) Radiographic changes in rheumatoid arthritis patients attaining different disease activity states with methotrexate monotherapy and infliximab plus methotrexate: the impacts of remission and tumour necrosis factor blockade. Ann Rheum Dis 68(6):823–827

    Article  PubMed  CAS  Google Scholar 

  100. Emery P et al (2006) The efficacy and safety of rituximab in patients with active rheumatoid arthritis despite methotrexate treatment: results of a phase IIB randomized, double-blind, placebo-controlled, dose-ranging trial. Arthritis Rheum 54(5):1390–1400

    Article  PubMed  CAS  Google Scholar 

  101. Tak PP et al (2011) Inhibition of joint damage and improved clinical outcomes with rituximab plus methotrexate in early active rheumatoid arthritis: the IMAGE trial. Ann Rheum Dis 70(1):39–46

    Article  PubMed  CAS  Google Scholar 

  102. Boumans MJ et al (2012) Rituximab abrogates joint destruction in rheumatoid arthritis by inhibiting osteoclastogenesis. Ann Rheum Dis 71(1):108–113

    Article  PubMed  CAS  Google Scholar 

  103. Wheater G et al (2011) Suppression of bone turnover by B-cell depletion in patients with rheumatoid arthritis. Osteoporos Int 22(12):3067–3072

    Article  PubMed  CAS  Google Scholar 

  104. Salvin S et al (2010) Variation in Lumbar and Femoral BMD after Rituximab therapy in Active Rheumatoid Arthritis. Ann Rheum Dis 2010;69(Suppl3):704. Available at http://www.eular.org/

    Google Scholar 

  105. Emery P (2003) The therapeutic potential of costimulatory blockade with CTLA4Ig in rheumatoid arthritis. Expert Opin Investig Drugs 12(4):673–681

    Article  PubMed  CAS  Google Scholar 

  106. Kliwinski C et al (2005) Prophylactic administration of abatacept prevents disease and bone destruction in a rat model of collagen-induced arthritis. J Autoimmun 25(3):165–171

    Article  PubMed  CAS  Google Scholar 

  107. Axmann R et al (2008) CTLA-4 directly inhibits osteoclast formation. Ann Rheum Dis 67(11):1603–1609

    Article  PubMed  CAS  Google Scholar 

  108. Genant HK et al (2008) Abatacept inhibits progression of structural damage in rheumatoid arthritis: results from the long-term extension of the AIM trial. Ann Rheum Dis 67(8):1084–1089

    Article  PubMed  CAS  Google Scholar 

  109. Kishimoto T (2006) Interleukin-6: discovery of a pleiotropic cytokine. Arthritis Res Ther 2006;8 Suppl 2: p. S2

    Google Scholar 

  110. Hashizume M, Hayakawa N, Mihara M (2008) IL-6 trans-signalling directly induces RANKL on fibroblast-like synovial cells and is involved in RANKL induction by TNF-alpha and IL-17. Rheumatology (Oxford) 47(11):1635–1640

    Article  CAS  Google Scholar 

  111. Palmqvist P et al (2002) IL-6, leukemia inhibitory factor, and oncostatin M stimulate bone resorption and regulate the expression of receptor activator of NF-kappa B ligand, osteoprotegerin, and receptor activator of NF-kappa B in mouse calvariae. J Immunol 169(6):3353–3362

    PubMed  CAS  Google Scholar 

  112. Garnero P et al (2010) Rapid and sustained improvement in bone and cartilage turnover markers with the anti-interleukin-6 receptor inhibitor tocilizumab plus methotrexate in rheumatoid arthritis patients with an inadequate response to methotrexate: results from a substudy of the multicenter double-blind, placebo-controlled trial of tocilizumab in inadequate responders to methotrexate alone. Arthritis Rheum 62(1):33–43

    Article  PubMed  CAS  Google Scholar 

  113. Nishimoto N et al (2007) Study of active controlled monotherapy used for rheumatoid arthritis, an IL-6 inhibitor (SAMURAI): evidence of clinical and radiographic benefit from an x ray reader-blinded randomised controlled trial of tocilizumab. Ann Rheum Dis 66(9):1162–1167

    Article  PubMed  CAS  Google Scholar 

  114. Smolen JS, Avila JC, Aletaha D (2012) Tocilizumab inhibits progression of joint damage in rheumatoid arthritis irrespective of its anti-inflammatory effects: disassociation of the link between inflammation and destruction. Ann Rheum Dis 71(5):687–693

    Article  PubMed  CAS  Google Scholar 

  115. Kume K et al. (2011) Tociluzimab Monotherapy Improves Bone Mineral Density as well as Etanercept or Adalimumab Monotherapy in Rheumatoid Arthritis. An Open-Lable, Randomized Clinical study. Ann Rheum Dis 2011;70(Suppl3): p. 471

    Google Scholar 

  116. Bekker PJ et al (2004) A single-dose placebo-controlled study of AMG 162, a fully human monoclonal antibody to RANKL, in postmenopausal women. J Bone Miner Res 19(7):1059–1066

    Article  PubMed  CAS  Google Scholar 

  117. Cohen SB et al (2008) Denosumab treatment effects on structural damage, bone mineral density, and bone turnover in rheumatoid arthritis: a twelve-month, multicenter, randomized, double-blind, placebo-controlled, phase II clinical trial. Arthritis Rheum 58(5):1299–1309

    Article  PubMed  CAS  Google Scholar 

  118. Deodhar A et al (2010) Denosumab-mediated increase in hand bone mineral density associated with decreased progression of bone erosion in rheumatoid arthritis patients. Arthritis Care Res (Hoboken) 62(4):569–574

    Article  CAS  Google Scholar 

  119. Jarrett SJ et al (2006) Preliminary evidence for a structural benefit of the new bisphosphonate zoledronic acid in early rheumatoid arthritis. Arthritis Rheum 54(5):1410–1414

    Article  PubMed  CAS  Google Scholar 

Download references

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Vis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vis, M., Güler-Yüksel, M. & Lems, W.F. Can bone loss in rheumatoid arthritis be prevented?. Osteoporos Int 24, 2541–2553 (2013). https://doi.org/10.1007/s00198-013-2334-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-013-2334-5

Keywords

Navigation